首页 » 文章 » 文章详细信息
Journal of High Energy Physics Volume 2022 ,Issue 10 ,2022-10-18
The radial distribution function reveals the underlying mesostructure of the AdS black hole
Regular Article - Theoretical Physics
Conghua Liu 1 , 2 Jin Wang 3
Show affiliations
DOI:10.1007/JHEP10(2022)171
Received 2022-9-1, accepted for publication 2022-10-18, Published 2022-10-18
PDF
摘要

Based on the equations of state, one can infer the underlying interaction potentials among the black hole molecules in the case of Schwarzschild-AdS and charged AdS black holes. The microscopic molecules with the interaction potential arrange in a specific way to form the mesostructure, whose size is between the macro (black hole system) and the micro (black hole molecules). As a result, the mesostructure leads to the emergence of the macroscopic phase. However, the information about the mesostructure of the AdS black hole are still elusive. In this paper, the radial distribution function is introduced to probe the mesostructure of the AdS black hole. We find that the mesostructure of the Schwarzschild-AdS black hole behaves as the ideal gas when the temperature is high. Furthermore, we find the mesostructure for the liquid-like (gas-like) phase of the small (large) charged AdS black hole. A sudden change of the mesostructure emerges from the liquid-like phase to the gas-like phase when the charged AdS black hole undergoes a phase transition from the small to large black hole, consistent with the viewpoint that the phase transition of the charged AdS black hole is reminiscent of that of the vdW fluid. This study provides a new angle towards understanding the black hole from its mesostructure.

关键词

Models of Quantum Gravity;Black Holes

授权许可

© The Author(s) 2022
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

通讯作者

Jin Wang.Department of Chemistry and Department of Physics and Astronomy, State University of New York at Stony Brook, 11794, Stony Brook, New York, USA.jin.wang.1@stonybrook.edu

推荐引用方式

Conghua Liu,Jin Wang. The radial distribution function reveals the underlying mesostructure of the AdS black hole. Journal of High Energy Physics ,Vol.2022, Issue 10(2022)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A Chamblin, R Emparan, CV Johnson, RC Myers et al.Holography, thermodynamics and fluctuations of charged AdS black holesPhys. Rev. D1999601999PhRvD..60j4026C175762710.1103/PhysRevD.60.104026[hep-th/9904197] [INSPIRE]
[2] T. Jacobson, Black hole evaporation and ultrashort distances, Phys. Rev. D44 (1991) 1731 [INSPIRE].
[3] D Kastor, S Ray, J TraschenEnthalpy and the Mechanics of AdS Black HolesClass. Quant. Grav.2009262009CQGra..26s5011K254514810.1088/0264-9381/26/19/1950111178.83030[arXiv:0904.2765] [INSPIRE]
[4] S Dutta, GS PuniaInteractions between AdS black hole moleculesPhys. Rev. D20211042021PhRvD.104l6009D436449710.1103/PhysRevD.104.126009[arXiv:2108.06135] [INSPIRE]
[5] A Chamblin, R Emparan, CV Johnson, RC Myers et al.Charged AdS black holes and catastrophic holographyPhys. Rev. D1999601999PhRvD..60f4018C172970110.1103/PhysRevD.60.064018[hep-th/9902170] [INSPIRE]
[6] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161 [INSPIRE].
[7] S.-W. Wei, Y.-X. Liu and R.B. Mann, Characteristic interaction potential of black hole molecules from the microscopic interpretation of Ruppeiner geometry, arXiv:2108.07655 [INSPIRE].
[8] E Spallucci, A SmailagicMaxwell’s equal area law for charged Anti-deSitter black holesPhys. Lett. B20137234362013PhLB..723..436S306557210.1016/j.physletb.2013.05.0381311.83028[arXiv:1305.3379] [INSPIRE]
[9] R. Li and J. Wang, Thermodynamics and kinetics of Hawking-Page phase transition, Phys. Rev. D102 (2020) 024085 [INSPIRE].
[10] R Li, K Zhang, J WangThermal dynamic phase transition of Reissner-Nordström Anti-de Sitter black holes on free energy landscapeJHEP2020100902020JHEP...10..090L10.1007/JHEP10(2020)0901456.83044[arXiv:2008.00495] [INSPIRE]
[11] C Liu, J WangPath integral and instantons for the dynamical process and phase transition rate of Reissner-Nordström-AdS black holesPhys. Rev. D20221052022PhRvD.105j4024L10.1103/PhysRevD.105.104024[arXiv:2109.14319] [INSPIRE]
[12] RA Hennigar, RB Mann, E TjoaSuperfluid Black HolesPhys. Rev. Lett.20171182017PhRvL.118b1301H10.1103/PhysRevLett.118.021301[arXiv:1609.02564] [INSPIRE]
[13] JM Maldacena, A StromingerStatistical entropy of four-dimensional extremal black holesPhys. Rev. Lett.1996774281996PhRvL..77..428M10.1103/PhysRevLett.77.428[hep-th/9603060] [INSPIRE]
[14] J.K. Percus and G.J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates, Phys. Rev.110 (1958) 1 [INSPIRE].
[15] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D7 (1973) 2333 [INSPIRE].
[16] S-W Wei, Y-X Liu, RB MannNovel dual relation and constant in Hawking-Page phase transitionsPhys. Rev. D20201022020PhRvD.102j4011W418642910.1103/PhysRevD.102.104011[arXiv:2006.11503] [INSPIRE]
[17] G. Ruppeiner, Thermodynamic curvature measures interactions, Am. J. Phys.78 (2010) 1170.
[18] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
[19] W.G. Unruh, Experimental black hole evaporation, Phys. Rev. Lett.46 (1981) 1351 [INSPIRE].
[20] G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys.67 (1995) 605 [Erratum ibid.68 (1996) 313] [INSPIRE].
[21] Z-M Xu, B Wu, W-L YangRuppeiner thermodynamic geometry for the Schwarzschild-AdS black holePhys. Rev. D20201012020PhRvD.101b4018X406765710.1103/PhysRevD.101.024018[arXiv:1910.12182] [INSPIRE]
[22] W.G. Unruh, Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D51 (1995) 2827 [gr-qc/9409008] [INSPIRE].
[23] O.U. Shanker, Z Dependence of Coherent μe Conversion Rate in Anomalous Neutrinoless Muon Capture, Phys. Rev. D20 (1979) 1608 [INSPIRE].
[24] E WittenAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a20914.53048[hep-th/9802150] [INSPIRE]
[25] S-W Wei, Y-X Liu, RB MannRepulsive Interactions and Universal Properties of Charged Anti-de Sitter Black Hole MicrostructuresPhys. Rev. Lett.20191232019PhRvL.123g1103W399701510.1103/PhysRevLett.123.071103[arXiv:1906.10840] [INSPIRE]
[26] A.A. Broyles, Radial Distribution Functions from the Born-Green Integral Equation, J. Chem. Phys.33 (1960) 456.
[27] BP DolanThe cosmological constant and the black hole equation of stateClass. Quant. Grav.2011282011CQGra..28l5020D10.1088/0264-9381/28/12/1250201219.83135[arXiv:1008.5023] [INSPIRE]
[28] S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D13 (1976) 191 [INSPIRE].
[29] D.C. Johnston, Thermodynamic properties of the van der Waals Fluid, arXiv:1402.1205.
[30] BP DolanPressure and volume in the first law of black hole thermodynamicsClass. Quant. Grav.2011282011CQGra..28w5017D286536010.1088/0264-9381/28/23/2350171231.83020[arXiv:1106.6260] [INSPIRE]
[31] C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett.77 (1996) 3288 [gr-qc/9603063] [INSPIRE].
[32] D Kubiznak, RB MannP-V criticality of charged AdS black holesJHEP2012070332012JHEP...07..033K296773310.1007/JHEP07(2012)0331397.83072[arXiv:1205.0559] [INSPIRE]
[33] GT Horowitz, A StromingerCounting states of near extremal black holesPhys. Rev. Lett.19967723681996PhRvL..77.2368H10.1103/PhysRevLett.77.2368[hep-th/9602051] [INSPIRE]
[34] D Kubiznak, RB Mann, M TeoBlack hole chemistry: thermodynamics with LambdaClass. Quant. Grav.2017342017CQGra..34f3001K362566710.1088/1361-6382/aa5c691368.83002[arXiv:1608.06147] [INSPIRE]
[35] O Lunin, SD MathurStatistical interpretation of Bekenstein entropy for systems with a stretched horizonPhys. Rev. Lett.2002882002PhRvL..88u1303L190356610.1103/PhysRevLett.88.2113031246.83129[hep-th/0202072] [INSPIRE]
[36] A.A. Broyles, Solutions to the Percus-Yevick Equation, J. Chem. Phys.35 (1961) 493.
[37] J.L. Barrat and J.P. Hansen, Basic concepts for simple and complex Liquids, Cambridge University Press, U.K. (2003).
[38] G.D. With, Liquid-State Physical Chemistry Fundamentals, Modeling, and Applications, Wiley-VCH Press, Germany (2013).
[39] Y-G Miao, Z-M XuOn thermal molecular potential among micromolecules in charged AdS black holesPhys. Rev. D2018982018PhRvD..98d4001M10.1103/PhysRevD.98.044001[arXiv:1712.00545] [INSPIRE]
[40] S.-W. Wei and Y.-X. Liu, Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition, Phys. Rev. Lett.115 (2015) 111302 [Erratum ibid.116 (2016) 169903] [arXiv:1502.00386] [INSPIRE].
[41] S. Giovanazzi, Hawking radiation in sonic black holes, Phys. Rev. Lett.94 (2005) 061302 [physics/0411064] [INSPIRE].
[42] F. Mandel, R.J. Bearman and M.Y. Bearman, Solutions of the Percus-Yevick Equation for the Lennard-Jones (6 − 12) and Hard-Sphere Potentials, J. Chem. Phys.52 (1970) 3315.
[43] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577 [INSPIRE].
[44] S-W Wei, Y-X Liu, RB MannRuppeiner Geometry, Phase Transitions, and the Microstructure of Charged AdS Black HolesPhys. Rev. D20191002019PhRvD.100l4033W404809210.1103/PhysRevD.100.124033[arXiv:1909.03887] [INSPIRE]