首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 19 ,2021-10-05
Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing
Deepchandra Srivastava 1 Jingsha Xu 1 Tuan V. Vu 1 , 2 Di Liu 1 , 3 Linjie Li 3 Pingqing Fu 4 Siqi Hou 1 Natalia Moreno Palmerola 5 Zongbo Shi 1 Roy M. Harrison 1 , 6
Show affiliations
DOI:10.5194/acp-21-14703-2021
PDF
摘要

This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) on data presented here which were collected at urban (Institute of Atmospheric Physics – IAP) and rural (Pinggu – PG) sites in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese megacity (APHH-Beijing) field campaigns. The campaigns were carried out from 9 November to 11 December 2016 and from 22 May to 24 June 2017. The PMF analysis included both organic and inorganic species, and a seven-factor output provided the most reasonable solution for the PM2.5 source apportionment. These factors are interpreted as traffic emissions, biomass burning, road dust, soil dust, coal combustion, oil combustion, and secondary inorganics. Major contributors to PM2.5 mass were secondary inorganics (IAP: 22 %; PG: 24 %), biomass burning (IAP: 36 %; PG: 30 %), and coal combustion (IAP: 20 %; PG: 21 %) sources during the winter period at both sites. Secondary inorganics (48 %), road dust (20 %), and coal combustion (17 %) showed the highest contribution during summer at PG, while PM2.5 particles were mainly composed of soil dust (35 %) and secondary inorganics (40 %) at IAP. Despite this, factors that were resolved based on metal signatures were not fully resolved and indicate a mixing of two or more sources. PMF results were also compared with sources resolved from another receptor model (i.e. chemical mass balance – CMB) and PMF performed on other measurements (i.e. online and offline aerosol mass spectrometry, AMS) and showed good agreement for some but not all sources. The biomass burning factor in PMF may contain aged aerosols as a good correlation was observed between biomass burning and oxygenated fractions (r2= 0.6–0.7) from AMS. The PMF failed to resolve some sources identified by the CMB and AMS and appears to overestimate the dust sources. A comparison with earlier PMF source apportionment studies from the Beijing area highlights the very divergent findings from application of this method.

授权许可

Copyright: © 2021 Deepchandra Srivastava et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Deepchandra Srivastava,Jingsha Xu,Tuan V. Vu,Di Liu,Linjie Li,Pingqing Fu,Siqi Hou,Natalia Moreno Palmerola,Zongbo Shi,Roy M. Harrison. Insight into PM2.5 sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmospheric Chemistry and Physics ,Vol.21, Issue 19(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,B. R. T.: Sources of fine organic aerosol. 4. Particulate abrasion productsfrom leaf surfaces of urban plants, Environ. Sci. Technol., 27, 2700–2711, https://doi.org/10.1021/es00049a008, 1993. 
[2] Zhang, J., Wang, Y., Huang, X., Liu, Z., Ji, D., and Sun, Y.:Characterization of organic aerosols in Beijing using an aerodynehigh-resolution aerosol mass spectrometer, Adv. Atmos. Sci., 32, 877–888, https://doi.org/10.1007/s00376-014-4153-9, 2015. 
[3] Querol, X., Zhuang, X., Alastuey, A., Viana, M., Lv, W., Wang, Y.,López, A., Zhu, Z., Wei, H., and Xu, S.: Speciation and sources ofatmospheric aerosols in a highly industrialised emerging mega-city inCentral China, J. Environ. Monit., 8, 1049–1059, https://doi.org/10.1039/B608768J, 2006. 
[4] Qiu, Y., Xie, Q., Wang, J., Xu, W., Li, L., Wang, Q., Zhao, J., Chen, Y.,Chen, Y., Wu, Y., Du, W., Zhou, W., Lee, J., Zhao, C., Ge, X., Fu, P., Wang,Z., Worsnop, D. R., and Sun, Y.: Vertical Characterization and SourceApportionment of Water-Soluble Organic Aerosol with High-resolution AerosolMass Spectrometry in Beijing, China, ACS Earth Space Chem., 3, 273–284, https://doi.org/10.1021/acsearthspacechem.8b00155, 2019. 
[5] Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., Tian, P., Han, Z.,Xia, X., Wang, Y., and Zhang, R.: Roles of regional transport andheterogeneous reactions in the PM2.5 increase during winter hazeepisodes in Beijing, Sci. Total Environ., 599–600, 246–253, https://doi.org/10.1016/j.scitotenv.2017.04.193, 2017b. 
[6] Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., and Sisler, J. F.:Atmospheric aerosol over Alaska: 2. Elemental composition and sources, J.Geophys. Res.-Atmos., 103, 19045–19057, 1998. 
[7] Lu, X., Yuan, D., Chen, Y., and Fung, J. C. H.: Impacts of urbanization andlong-term meteorological variations on global PM2.5 and its associatedhealth burden, Environ. Pollut., 270, 116003, https://doi.org/10.1016/j.envpol.2020.116003, 2021. 
[8] Ma, Q., Wu, Y., Tao, J., Xia, Y., Liu, X., Zhang, D., Han, Z., Zhang, X.,and Zhang, R.: Variations of Chemical composition and source apportionmentof PM2.5 during winter haze episodes in Beijing, Aerosol. Air Qual.Res., 17, 2791–2803, https://doi.org/10.4209/aaqr.2017.10.0366, 2017a. 
[9] Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W.,Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes inaerosol chemistry from 2014 to 2016 in winter in Beijing: Insights fromhigh-resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 124,1132–1147, https://doi.org/10.1029/2018JD029245, 2019. 
[10] Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., Zhao, B.,Cai, S., Desyaterik, Y., Li, X., Zhou, T., Gustafsson, Ö., and Collett,J. L.: Residential coal combustion as a source of levoglucosan in China,Environ. Sci. Technol., 52, 1665–1674, https://doi.org/10.1021/acs.est.7b05858, 2018. 
[11] Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B., Li, X., An, K.,and Chu, J.: Characterization and source apportionment of PM2.5 in anurban environment in Beijing, Aerosol Air Qual. Res., 13, 574–583, https://doi.org/10.4209/aaqr.2012.07.0192, 2013. 
[12] Polissar, A. V., Hopke, P. K., and Poirot, R. L.: Atmospheric aerosol overVermont: chemical composition and sources, Environ. Sci. Technol., 35,4604–4621, 2001. 
[13] Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., andWang, Y. S.: Characterization of submicron particles during biomass burningand coal combustion periods in Beijing, China, Sci. Total Environ., 562,812–821, https://doi.org/10.1016/j.scitotenv.2016.04.015, 2016. 
[14] Piscitello, A., Bianco, C., Casasso, A., and Sethi, R.: Non-exhaust trafficemissions: Sources, characterization, and mitigation measures, Sci. TotalEnviron., 766, 144440, https://doi.org/10.1016/j.scitotenv.2020.144440, 2021. 
[15] Liu, Y., Zheng, M., Yu, M., Cai, X., Du, H., Li, J., Zhou, T., Yan, C., Wang, X., Shi, Z., Harrison, R. M., Zhang, Q., and He, K.: High-time-resolution source apportionment of PM2.5 in Beijing with multiple models, Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, 2019. 
[16] Lim, J.-M., Lee, J.-H., Moon, J.-H., Chung, Y.-S., and Kim, K.-H.: Sourceapportionment of PM10 at a small industrial area using Positive MatrixFactorization, Atmos. Res., 95, 88–100, https://doi.org/10.1016/j.atmosres.2009.08.009, 2010. 
[17] Petit, J. E., Favez, O., Albinet, A., and Canonaco, F.: A user-friendly toolfor comprehensive evaluation of the geographical origins of atmosphericpollution: Wind and trajectory analyses, Environ. Modell. Softw., 88,183–187, https://doi.org/10.1016/j.envsoft.2016.11.022, 2017. 
[18] Li, D., Liu, J., Zhang, J., Gui, H., Du, P., Yu, T., Wang, J., Lu, Y., Liu,W., and Cheng, Y.: Identification of long-range transport pathways andpotential sources of PM2.5 and PM10 in Beijing from 2014 to 2015, J. Environ. Sci., 56, 214–229, https://doi.org/10.1016/j.jes.2016.06.035, 2017. 
[19] Li, M., Liu, Z., Chen, J., Huang, X., Liu, J., Xie, Y., Hu, B., Xu, Z.,Zhang, Y., and Wang, Y.: Characteristics and source apportionment ofmetallic elements in PM2.5 at urban and suburban sites in Beijing:Implication of emission reduction, Atmosphere, 10, 105, https://doi.org/10.3390/atmos10030105, 2019. 
[20] Zhang, J.-J., Cui, M.-M., Fan, D., Zhang, D.-S., Lian, H.-X., Yin, Z.-Y.,and Li, J.: Relationship between haze and acute cardiovascular,cerebrovascular, and respiratory diseases in Beijing, Environ. Sci. Pollut.Res., 22, 3920–3925, https://doi.org/10.1007/s11356-014-3644-7, 2015. 
[21] Thorpe, A. and Harrison, R. M.: Sources and properties of non-exhaustparticulate matter from road traffic: A review, Sci. Total Environ., 400,270–282, https://doi.org/10.1016/j.scitotenv.2008.06.007, 2008. 
[22] Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014. 
[23] Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y.,and Cass, G. R.: Seasonal trends in PM2.5 source contributions inBeijing, China, Atmos. Environ., 39, 3967–3976, https://doi.org/10.1016/j.atmosenv.2005.03.036, 2005. 
[24] Paulot, F., Paynter, D., Ginoux, P., Naik, V., Whitburn, S., Van Damme, M.,Clarisse, L., Coheur, P.-F., and Horowitz, L. W.: Gas-aerosol partitioningof ammonia in biomass burning plumes: Implications for the interpretation ofspaceborne observations of ammonia and the radiative forcing of ammoniumnitrate, Geophys. Res. Lett., 44, 8084–8093, https://doi.org/10.1002/2017GL074215,2017. 
[25] Gu, Y., Huang, R.-J., Li, Y., Duan, J., Chen, Q., Hu, W., Zheng, Y., Lin,C., Ni, H., Dai, W., Cao, J., Liu, Q., Chen, Y., Chen, C., Ovadnevaite, J.,Ceburnis, D., and O'Dowd, C.: Chemical nature and sources of fine particlesin urban Beijing: Seasonality and formation mechanisms, Environ. Int., 140,105732, https://doi.org/10.1016/j.envint.2020.105732, 2020. 
[26] Tie, X., Huang, R.-J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D.,Pöschl, U., Hoffmann, T., Dusek, U., Li, G., Worsnop, D. R., and O'Dowd,C. D.: Severe Pollution in China Amplified by Atmospheric Moisture, Sci.Rep., 7, 15760–15760, https://doi.org/10.1038/s41598-017-15909-1, 2017. 
[27] Zhang, Y., Sheesley, R. J., Schauer, J. J., Lewandowski, M., Jaoui, M.,Offenberg, J. H., Kleindienst, T. E., and Edney, E. O.: Source apportionmentof primary and secondary organic aerosols using positive matrixfactorization (PMF) of molecular markers, Atmos. Environ., 43, 5567–5574,2009. 
[28] Heal, M. R., Kumar, P., and Harrison, R. M.: Particles, air quality, policyand health, Chem. Soc. Rev., 41, 6606–6630, 2012. 
[29] Vejahati, F., Xu, Z., and Gupta, R.: Trace elements in coal: Associationswith coal and minerals and their behavior during coal utilization – Areview, Fuel, 89, 904–911, https://doi.org/10.1016/j.fuel.2009.06.013, 2010. 
[30] Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., Theodosi, C., and Mihalopoulos, N.: Long-term characterization of organic and elemental carbon in the PM2.5 fraction: the case of Athens, Greece, Atmos. Chem. Phys., 14, 13313–13325, https://doi.org/10.5194/acp-14-13313-2014, 2014. 
[31] Takuwa, T., Mkilaha, I. S. N., and Naruse, I.: Mechanisms of fineparticulates formation with alkali metal compounds during coal combustion,Fuel, 85, 671–678, 2006. 
[32] He, G., Pan, Y., and Tanaka, T.: The short-term impacts of COVID-19 lockdownon urban air pollution in China, Nature Sustainability, 3, 1005–1011, https://doi.org/10.1038/s41893-020-0581-y, 2020. 
[33] Tao, S., Ru, M. Y., Du, W., Zhu, X., Zhong, Q. R., Li, B. G., Shen, G. F.,Pan, X. L., Meng, W. J., Chen, Y. L., Shen, H. Z., Lin, N., Su, S., Zhuo, S.J., Huang, T. B., Xu, Y., Yun, X., Liu, J. F., Wang, X. L., Liu, W. X.,Chen, H. F., and Zhu, D. Q.: Quantifying the Rural Residential EnergyTransition in China from 1992 to 2012 through a Representative NationalSurvey, Nat. Energy, 3, 567–573, 2018. 
[34] Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negativefactor model with optimal utilization of error estimates of data values,Environmetrics, 5, 111–126, 1994. 
[35] Pant, P. and Harrison, R. M.: Critical review of receptor modelling forparticulate matter: a case study of India, Atmos. Environ., 49, 1–12, 2012. 
[36] Herrera Murillo, J., Campos Ramos, A., Ángeles García, F., BlancoJiménez, S., Cárdenas, B., and Mizohata, A.: Chemical composition ofPM2. 5 particles in Salamanca, Guanajuato Mexico: Source apportionment withreceptor models, Atmos. Res., 107, 31–41, https://doi.org/10.1016/j.atmosres.2011.12.010,2012. 
[37] Tian, S. L., Pan, Y. P., and Wang, Y. S.: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, 2016. 
[38] Zhou, Y., Zheng, N., Luo, L., Zhao, J., Qu, L., Guan, H., Xiao, H., Zhang,Z., Tian, J., and Xiao, H.: Biomass burning related ammonia emissionspromoted a self-amplifying loop in the urban environment in Kunming (SWChina), Atmos. Environ., 253, 118138,https://doi.org/10.1016/j.atmosenv.2020.118138, 2020. 
[39] Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noisevariables in factor analytic models, Anal. Chim. Acta, 490, 277–289, 2003. 
[40] Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., and Harrison,R. M.: Characterization of ambient PM2.5 at a pollution hotspot in NewDelhi, India and inference of sources, Atmos. Environ., 109, 178–189,https://doi.org/10.1016/j.atmosenv.2015.02.074, 2015. 
[41] Henry, R., Norris, G. A., Vedantham, R., and Turner, J. R.: Source RegionIdentification Using Kernel Smoothing, Environ. Sci. Technol., 43,4090–4097, https://doi.org/10.1021/es8011723, 2009. 
[42] Paatero, P.: Least squares formulation of robust non-negative factoranalysis, Chemom. Intell. Lab. Syst., 37, 23–35, https://doi.org/10.1016/S0169-7439(96)00044-5, 1997. 
[43] Guo, H., Zhou, J., Wang, L., Zhou, Y., Yuan, J., and Zhao, R.: Seasonalvariations and sources of carboxylic acids in PM2.5 in Wuhan, China,Aerosol Air. Qual. Res., 15, 517–528, https://doi.org/10.4209/aaqr.2014.02.0040, 2015. 
[44] Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013. 
[45] Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., and Weber, R. J.: Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10, 6839–6853, https://doi.org/10.5194/acp-10-6839-2010, 2010. 
[46] Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013. 
[47] Harrison, R. M. and Srivastava, D.: Research data supporting “Insight into PM2.5 sources by applying Positive Matrix factorization (PMF) at an urban and rural site of Beijing”, University of Birmingham [data set], https://doi.org/10.25500/edata.bham.00000721, 2021. 
[48] Swietlicki, E. and Krejci, R.: Source characterisation of the CentralEuropean atmospheric aerosol using multivariate statistical methods, Nucl.Instrum. Methods Phys. Res., 109–110, 519–525, https://doi.org/10.1016/0168-583X(95)01220-6, 1996. 
[49] Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols viafactor analysis of aerosol mass spectrometry: a review, Anal. Bioanal.Chem., 401, 3045–3067, 2011. 
[50] Harrison, R. M., Vu, T. V., Jafar, H., and Shi, Z.: More mileage in reducingurban air pollution from road traffic, Environ. Int., 149, 106329,https://doi.org/10.1016/j.envint.2020.106329, 2021. 
[51] Zhao, X., Hu, Q., Wang, X., Ding, X., He, Q., Zhang, Z., Shen, R., Lü,S., Liu, T., Fu, X., and Chen, L.: Composition profiles of organic aerosolsfrom Chinese residential cooking: case study in urban Guangzhou, southChina, J. Atmos. Chem., 72, 1–18, https://doi.org/10.1007/s10874-015-9298-0, 2015. 
[52] Feng, X., Li, Q., Zhu, Y., Wang, J., Liang, H., and Xu, R.: Formation anddominant factors of haze pollution over Beijing and its peripheral areas inwinter, Atmos. Pollut. Res., 5, 528–538, https://doi.org/10.5094/APR.2014.062, 2014. 
[53] Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016. 
[54] Zhang, Y.-X., Min, S., Zhang, Y.-H., Zeng, L.-M., He, L.-Y., Bin, Z., Wei,Y.-J., and Zhu, X.-L.: Source profiles of particulate organic mattersemitted from cereal straw burnings, J. Environ. Sci., 19,167–175, 2007. 
[55] Eglinton, G., Gonzalez, A. G., Hamilton, R. J., and Raphael, R. A.:Hydrocarbon constituents of the wax coatings of plant leaves: A taxonomicsurvey, Phytochemistry, 1, 89–102, https://doi.org/10.1016/S0031-9422(00)88006-1, 1962. 
[56] Sun, Y., He, Y., Kuang, Y., Xu, W., Song, S., Ma, N., Tao, J., Cheng, P.,Wu, C., Su, H., Cheng, Y., Xie, C., Chen, C., Lei, L., Qiu, Y., Fu, P.,Croteau, P., and Worsnop, D. R.: Chemical differences between PM1 andPM2.5 in Highly polluted environment and implications in air pollutionstudies, Geophys. Res. Lett., 47, e2019GL086288, https://doi.org/10.1029/2019GL086288, 2020. 
[57] Oros, D. R. and Simoneit, B. R. T.: Identification and emission rates ofmolecular tracers in coal smoke particulate matter, Fuel, 79, 515–536,https://doi.org/10.1016/S0016-2361(99)00153-2, 2000. 
[58] Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive MatrixFactorization (PMF) 5.0 fundamentals and User Guide Prepared for the USEnvironmental Protection Agency Office of Research and Development,Washington, DC, DC EPA/600/R-14/108, 2014. 
[59] Niu, H., Hu, W., Zhang, D., Wu, Z., Guo, S., Pian, W., Cheng, W., and Hu,M.: Variations of fine particle physiochemical properties during a heavyhaze episode in the winter of Beijing, Sci. Total Environ., 571, 103–109,https://doi.org/10.1016/j.scitotenv.2016.07.147, 2016. 
[60] Mazzei, F., D'Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G.,and Vecchi, R.: Characterization of particulate matter sources in an urbanenvironment, Sci. Total Environ., 401, 81–89, https://doi.org/10.1016/j.scitotenv.2008.03.008, 2008. 
[61] GBD MAPS Working Group: Burden of Disease Attributable to Coal-Burning andOther Major Sources of Air Pollution in China, Special Report 20, HealthEffects Institute, Boston, MA, 2016. 
[62] Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.:Investigation of the sources and evolution processes of severe hazepollution in Beijing in January 2013, 119, 4380–4398, https://doi.org/10.1002/2014JD021641, 2014. 
[63] Zhang, Y., Ren, H., Sun, Y., Cao, F., Chang, Y., Liu, S., Lee, X., Agrios,K., Kawamura, K., Liu, D., Ren, L., Du, W., Wang, Z., Prévôt, A. S.H., Szidat, S., and Fu, P.: High contribution of nonfossil sources tosubmicrometer organic aerosols in Beijing, China, Environ. Sci. Technol.,51, 7842–7852, https://doi.org/10.1021/acs.est.7b01517, 2017. 
[64] Sun, Y., Zhuang, G., Wang, Y., Zhao, X., Li, J., Wang, Z., and An, Z.:Chemical composition of dust storms in Beijing and implications for themixing of mineral aerosol with pollution aerosol on the pathway, J. Geophys.Chem., 110, D24209, https://doi.org/10.1029/2005jd006054, 2005. 
[65] Grigoratos, T. and Martini, G.: Brake wear particle emissions: a review,Environ. Sci. Pollut. Res., 22, 2491–2504, https://doi.org/10.1007/s11356-014-3696-8, 2015. 
[66] Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao,M.: Characteristics of particulate carbon emissions from real-world Chinesecoal combustion, Environ. Sci. Technol., 42, 5068–5073, https://doi.org/10.1021/es7022576,2008. 
[67] Zhao, Z.-Y., Cao, F., Fan, M.-Y., Zhang, W.-Q., Zhai, X.-Y., Wang, Q., andZhang, Y.-L.: Coal and biomass burning as major emissions of NOX inNortheast China: Implication from dual isotopes analysis of fine nitrateaerosols, Atmos. Environ., 242, 117762, https://doi.org/10.1016/j.atmosenv.2020.117762, 2020. 
[68] Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y.,Jayne, J. T., Zhang, X., Zhang, X., and Worsnop, D. R.: Highly time- andsize-resolved characterization of submicron aerosol particles in Beijingusing an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44, 131–140,https://doi.org/10.1016/j.atmosenv.2009.03.020, 2010. 
[69] Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion ModelingSystem, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/bams-d-14-00110.1,2015. 
[70] Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933–8945, https://doi.org/10.5194/acp-10-8933-2010, 2010. 
[71] Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M., Sun, Y., Liu, Z., Wang, L.,Tang, G., and Hu, B. J. A. E.: The heaviest particulate air-pollutionepisodes occurred in northern China in January, 2013: Insights gained fromobservation, Atmos. Environ., 92, 546–556,doi.org/10.1016/j.atmosenv.2014.04.048, 2014. 
[72] Jaeckels, J. M., Bae, M.-S., and Schauer, J. J.: Positive matrixfactorization (PMF) analysis of molecular marker measurements to quantifythe sources of organic aerosols, Environ. Sci. Technol., 41, 5763–5769,2007. 
[73] Draxler, R.: Hysplit4 User's Guide, NOAA Tech. Memo. ERL ARL-230, 35 pp.available at: http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf (last access: 13 April 2020​​​​​​​), 1999. 
[74] Duvall, R. M., Majestic, B. J., Shafer, M. M., Chuang, P. Y., Simoneit, B.R. T., and Schauer, J. J.: The water-soluble fraction of carbon, sulfur, andcrustal elements in Asian aerosols and Asian soils, Atmos. Environ., 42,5872–5884, https://doi.org/10.1016/j.atmosenv.2008.03.028,2008. 
[75] Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M.,Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S.H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I.,Kasper-Giebl, A., Maenhaut, W., and Hitzenberger, R.: Source apportionmentof particulate matter in Europe: A review of methods and results, J. AerosolSci., 39, 827–849, https://doi.org/10.1016/j.jaerosci.2008.05.007, 2008. 
[76] Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu, Z.: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory, Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, 2016. 
[77] Duong, T. T. T. and Lee, B.-K.: Determining contamination level of heavymetals in road dust from busy traffic areas with different characteristics,J. Environ. Manage., 92, 554–562, https://doi.org/10.1016/j.jenvman.2010.09.010, 2011. 
[78] Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.: Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique, Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, 2019. 
[79] Waked, A., Favez, O., Alleman, L. Y., Piot, C., Petit, J.-E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., and Leoz-Garziandia, E.: Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions, Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, 2014. 
[80] Sun, Y., Zhuang, G., Tang, A., Wang, Y., and An, Z.: ChemicalCharacteristics of PM2.5 and PM10 in Haze-Fog Episodes in Beijing,Environ. Sci. Technol., 40, 3148–3155, https://doi.org/10.1021/es051533g, 2006. 
[81] Wang, G., Gu, S., Chen, J., Wu, X., and Yu, J.: Assessment of health andeconomic effects by PM2.5 pollution in Beijing: a combinedexposure–response and computable general equilibrium analysis, Environ.Technol., 37, 3131–3138, https://doi.org/10.1080/09593330.2016.1178332, 2016. 
[82] Sörme, L., Bergbäck, B., and Lohm, U.: Goods in the Anthroposphereas a Metal Emission Source A Case Study of Stockholm, Sweden, Water, AirSoil Poll., 1, 213–227, https://doi.org/10.1023/A:1017516523915, 2001. 
[83] Huang, X., Tang, G., Zhang, J., Liu, B., Liu, C., Zhang, J., Cong, L.,Cheng, M., Yan, G., Gao, W., Wang, Y., and Wang, Y.: Characteristics ofPM2.5 pollution in Beijing after the improvement of air quality, J. Environ. Sci., 100, 1–10, https://doi.org/10.1016/j.jes.2020.06.004,2021. 
[84] Srimuruganandam, B. and Shiva Nagendra, S. M.: Application of positivematrix factorization in characterization of PM10 and PM2.5emission sources at urban roadside, Chemosphere, 88, 120–130, https://doi.org/10.1016/j.chemosphere.2012.02.083, 2012. 
[85] Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L. G., Shao, M.,and Slanina, S.: Source apportionment of PM2.5 in Beijing by positive matrix factorization, Atmos. Environ., 40, 1526–1537, https://doi.org/10.1016/j.atmosenv.2005.10.039, 2006. 
[86] Hopke, P. K.: Review of receptor modeling methods for source apportionment,J. Air Waste Manage. Assoc., 66, 237–259, https://doi.org/10.1080/10962247.2016.1140693, 2016. 
[87] Cao, L., Zhu, Q., Huang, X., Deng, J., Chen, J., Hong, Y., Xu, L., and He,L.: Chemical characterization and source apportionment of atmosphericsubmicron particles on the western coast of Taiwan Strait, China, J.Environ. Sci., 52, 293–304, https://doi.org/10.1016/j.jes.2016.09.018, 2017. 
[88] Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu,Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemicalcomposition, sources, and aging process of submicron aerosols in Beijing:Contrast between summer and winter, J. Geophys. Res.-Atmos., 121, 1955–1977, https://doi.org/10.1002/2015jd024020,2016. 
[89] Canepari, S., Perrino, C., Olivieri, F., and Astolfi, M. L.:Characterisation of the traffic sources of PM through size-segregatedsampling, sequential leaching and ICP analysis, Atmos. Environ., 42,8161–8175, https://doi.org/10.1016/j.atmosenv.2008.07.052,2008. 
[90] Dall'Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., and Chiari, M.: Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS – diurnal variations and PMF receptor modelling, Atmos. Chem. Phys., 13, 4375–4392, https://doi.org/10.5194/acp-13-4375-2013, 2013. 
[91] Chan, Y., Simpson, R., McTainsh, G., Vowles, P., Cohen, D., and Bailey, G.J. A. E.: Characterisation of chemical species in PM2.5 and PM10aerosols in Brisbane, Australia, Atmos. Environ., 31, 3773–3785, 1997. 
[92] Wang, L., Zhang, N., Liu, Z., Sun, Y., Ji, D., and Wang, Y.: The Influenceof Climate Factors, Meteorological Conditions, and boundary-layer structureon severe haze pollution in the Beijing-Tianjin-Hebei region during January2013, Adv. Meteorol., 2014, 685971, https://doi.org/10.1155/2014/685971, 2014. 
[93] Wang, H., Zhuang, Y., Wang, Y., Sun, Y., Yuan, H., Zhuang, G., and Hao, Z.:Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing,China, J. Environ. Sci., 20, 1323–1327, https://doi.org/10.1016/S1001-0742(08)62228-7, 2008. 
[94] Wang, Q., Shao, M., Zhang, Y., Wei, Y., Hu, M., and Guo, S.: Source apportionment of fine organic aerosols in Beijing, Atmos. Chem. Phys., 9, 8573–8585, https://doi.org/10.5194/acp-9-8573-2009, 2009. 
[95] Pant, P. and Harrison, R. M.: Estimation of the contribution of roadtraffic emissions to particulate matter concentrations from fieldmeasurements: A review, Atmos. Environ., 77, 78–97, https://doi.org/10.1016/j.atmosenv.2013.04.028, 2013. 
[96] Srivastava, D., Tomaz, S., Favez, O., Lanzafame, G. M., Golly, B., Besombes,J. L., Alleman, L. Y., Jaffrezo, J. L., Jacob, V., Perraudin, E., Villenave,E., and Albinet, A.: Speciation of organic fraction does matter for sourceapportionment. Part 1: A one-year campaign in Grenoble (France), Sci. Total Environ., 624, 1598–1611, https://doi.org/10.1016/j.scitotenv.2017.12.135, 2018. 
[97] Simoneit, B. R.: A review of biomarker compounds as source indicators andtracers for air pollution, Environ. Sci. Pollut. Res., 6, 159–169, 1999. 
[98] Shrivastava, M. K., Subramanian, R., Rogge, W. F., and Robinson, A. L.:Sources of organic aerosol: Positive matrix factorization of molecularmarker data and comparison of results from different source apportionmentmodels, Atmos. Environ., 41, 9353–9369, https://doi.org/10.1016/j.atmosenv.2007.09.016,2007. 
[99] Smichowski, P., Gómez, D., Frazzoli, C., and Caroli, S.: Traffic-RelatedElements in Airborne Particulate Matter, Appl. Spectrosc. Rev., 43,23–49, https://doi.org/10.1080/05704920701645886, 2007. 
[100] Lee, S., Liu, W., Wang, Y., Russell, A. G., and Edgerton, E. S.: Sourceapportionment of PM2.5: Comparing PMF and CMB results for four ambientmonitoring sites in the southeastern United States, Atmos. Environ., 42,4126–4137, 2008a. 
[101] Batterman, S., Xu, L., Chen, F., Chen, F., and Zhong, X.: Characteristics ofPM(2.5) Concentrations across Beijing during 2013–2015, Atmos. Environ.(Oxford, England: 1994), 145, 104–114, https://doi.org/10.1016/j.atmosenv.2016.08.060, 2016. 
[102] Bi, X., Simoneit, B. R. T., Sheng, G., and Fu, J.: Characterization ofmolecular markers in smoke from residential coal combustion in China, Fuel,87, 112–119, https://doi.org/10.1016/j.fuel.2007.03.047, 2008. 
[103] Lee, B.-K. and Hieu, N. T.: Seasonal variation andsources of heavy metals in atmospheric aerosols in a residential area ofUlsan, Korea, Aerosol Air Qual. Res., 11, 679–688, 2011. 
[104] Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.H.: Unexpected air pollution with marked emission reductions during theCOVID-19 outbreak in China, Science, 369, 702–706, https://doi.org/10.1126/science.abb7431,2020. 
[105] Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,P., Kerminen, V.-M., Kondo, Y., Liao, H., and Lohmann, U.: Clouds andaerosols, in: Climate change 2013: the physical science basis, Contributionof Working Group I to the Fifth Assessment Report of the IntergovernmentalPanel on Climate Change, Cambridge University Press, 571–657, 2013. 
[106] Watson, J. G., Robinson, N. F., Chow, J. C., Henry, R. C., Kim, B., Pace,T., Meyer, E. L., and Nguyen, Q.: The USEPA/DRI chemical mass balancereceptor model, CMB 7.0, Environ. Soft., 5, 38–49, 1990. 
[107] Lee, S., Kim, H. K., Yan, B., Cobb, C. E., Hennigan, C., Nichols, S.,Chamber, M., Edgerton, E. S., Jansen, J. J., Hu, Y., Zheng, M., Weber, R.J., and Russell, A. G.: Diagnosis of Aged Prescribed Burning PlumesImpacting an Urban Area, Environ. Sci. Technol., 42, 1438–1444, https://doi.org/10.1021/es7023059, 2008b. 
[108] Wang, Y., Hopke, P. K., Xia, X., Rattigan, O. V., Chalupa, D. C., and Utell,M. J.: Source apportionment of airborne particulate matter using inorganicand organic species as tracers, Atmos. Environ., 55, 525–532, 2012. 
[109] Cai, T., Zhang, Y., Fang, D., Shang, J., Zhang, Y., and Zhang, Y.: Chinesevehicle emissions characteristic testing with small sample size: Results andcomparison, Atmos. Pollut. Res., 8, 154–163, https://doi.org/10.1016/j.apr.2016.08.007, 2017. 
[110] Wu, P., Ding, Y., and Liu, Y.: Atmospheric circulation anddynamic mechanism for persistent haze events in the Beijing–Tianjin–Hebeiregion, Adv. Atmos. Sci., 34, 429–440, 2017. 
[111] Song, Y., Tang, X., Xie, S., Zhang, Y., Wei, Y., Zhang, M., Zeng, L., andLu, S.: Source apportionment of PM2.5 in Beijing in 2004, J. Hazard. Mater., 146, 124–130, https://doi.org/10.1016/j.jhazmat.2006.11.058,2007. 
[112] Schembari, C., Bove, M. C., Cuccia, E., Cavalli, F., Hjorth, J.,Massabò, D., Nava, S., Udisti, R., and Prati, P.: Source apportionmentof PM10 in the Western Mediterranean based on observations from acruise ship, Atmos. Environ., 98, 510–518, https://doi.org/10.1016/j.atmosenv.2014.09.015,2014. 
[113] Laing, J. R., Hopke, P. K., Hopke, E. F., Husain, L., Dutkiewicz, V. A.,Paatero, J., and Viisanen, Y.: Positive Matrix Factorization of 47 Years ofParticle Measurements in Finnish Arctic, Aerosol. Air Qual. Res., 15,188–207 2015. 
[114] Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Van Vu, T., Elliott, R. J. R.,Li, W., Bloss, W. J., and Harrison, R. M.: Abrupt but smaller than expectedchanges in surface air quality attributable to COVID-19 lockdowns, Sci.Adv., 7, eabd6696, https://doi.org/10.1126/sciadv.abd6696, 2021. 
[115] Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, 2019. 
[116] Kolattukudy, P. E.: Chemistry and biochemistry of natural waxes, ElsevierScientific Pub. Co., 1976. 
[117] Kim, E.-A. and Koh, B.: Utilization of road dust chemical profiles forsource identification and human health impact assessment, Sci. Rep., 10,14259, https://doi.org/10.1038/s41598-020-71180-x, 2020. 
[118] Amato, F. and Hopke, P. K.: Source apportionment of the ambient PM2.5across St. Louis using constrained positive matrix factorization, Atmos.Environ., 46, 329–337, https://doi.org/10.1016/j.atmosenv.2011.09.062, 2012. 
[119] Xing, Y.-F., Xu, Y.-H., Shi, M.-H., and Lian, Y.-X.: The impact of PM2.5 onthe human respiratory system, J. Thorac. Dis., 8, E69–E74, https://doi.org/10.3978/j.issn.2072-1439.2016.01.19, 2016. 
[120] Xie, Y., Dai, H., Zhang, Y., Wu, Y., Hanaoka, T., and Masui, T.:Comparison of health and economic impacts of PM2.5 and ozone pollution inChina, Environ. Int., 130, 104881, https://doi.org/10.1016/j.envint.2019.05.075, 2019. 
[121] Wu, X., Chen, C., Vu, T. V., Liu, D., Baldo, C., Shen, X., Zhang, Q., Cen,K., Zheng, M., He, K., Shi, Z., and Harrison, R. M.: Source apportionment offine organic carbon (OC) using receptor modelling at a rural site ofBeijing: Insight into seasonal and diurnal variation of sourcecontributions, Environ. Pollut., 115078, https://doi.org/10.1016/j.envpol.2020.115078, 2020. 
[122] Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J.,Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urbanenvironment by Multilinear Engine: A comparison with PMF2, Atmos. Environ.,43, 2770–2780, https://doi.org/10.1016/j.atmosenv.2009.02.039,2009. 
[123] Xu, J., Liu, D., Wu, X., Vu, T. V., Zhang, Y., Fu, P., Sun, Y., Xu, W., Zheng, B., Harrison, R. M., and Shi, Z.: Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model, Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, 2021. 
文献评价指标
浏览 10次
下载全文 7次
评分次数 0次
用户评分 0.0分
分享 0次