首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 18 ,2021-09-27
Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere
Sihui Jiang 1 Fang Zhang 2 Jingye Ren 1 Lu Chen 1 Xing Yan 1 Jieyao Liu 1 Yele Sun 3 Zhanqing Li 4
Show affiliations
DOI:10.5194/acp-21-14293-2021
PDF
摘要

The effect of new particle formation (NPF) on cloud condensation nuclei (CCN) varies widely in diverse environments. CCN or cloud droplets from NPF sources remain highly uncertain in the urban atmosphere; they are greatly affected by the high background aerosols and frequent local emissions. In this study, we quantified the effect of NPF on cloud droplet number concentration (CDNC, or Nd) at typical updraft velocities (V) in clouds based on field observations on 25 May–18 June 2017 in urban Beijing. We show that NPF increases the Nd by 32 %–40 % at V=0.3–3 m s−1 during the studied period. The Nd is reduced by 11.8 ± 5.0 % at V=3 m s−1 and 19.0 ± 4.5 % at V=0.3 m s−1 compared to that calculated from constant supersaturations due to the water vapor competition effect, which suppresses the cloud droplet formation by decreasing the environmental maximum supersaturation (Smax). The effect of water vapor competition becomes smaller at larger V that can provide more sufficient water vapor. However, under extremely high aerosol particle number concentrations, the effect of water vapor competition becomes more pronounced. As a result, although a larger increase of CCN-sized particles by NPF events is derived on clean NPF days when the number concentration of preexisting background aerosol particles is very low, no large discrepancy is presented in the enhancement of Nd by NPF between clean and polluted NPF days. We finally reveal a considerable impact of the primary sources on the evaluation of the contribution of NPF to CCN number concentration (NCCN) and Nd based on a case study. Our study highlights the importance of full consideration of both the environmental meteorological conditions and multiple sources (i.e., secondary and primary) to evaluate the effect of NPF on clouds and the associated climate effects in polluted regions.

授权许可

Copyright: © 2021 Sihui Jiang et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Sihui Jiang,Fang Zhang,Jingye Ren,Lu Chen,Xing Yan,Jieyao Liu,Yele Sun,Zhanqing Li. Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere. Atmospheric Chemistry and Physics ,Vol.21, Issue 18(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009. 
[2] Zimmerman, A. , Petters, M. D., and Meskhidze, N.: Observations of newparticle formation, modal growth rates, and direct emissions of sub-10 nm particles in an urban environment, Atmos. Environ., 242, 117835,https://doi.org/10.1016/j.atmosenv.2020.117835, 2020. 
[3] Ghan, S., Chung, C., and Penner, J.: A parameterization of cloud dropletnucleation part I: single aerosol type, Atmos. Res., 30, 198–221,https://doi.org/10.1016/0169-8095(93)90024-I, 1993. 
[4] Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp-15-10149-2015, 2015. 
[5] Morales Betancourt, R. and Nenes, A.: Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a global climate model, Atmos. Chem. Phys., 14, 4809–4826, https://doi.org/10.5194/acp-14-4809-2014, 2014. 
[6] Sullivan, S. C., Lee, D., Oreopoulos, L., and Nenes, A.: The role of updraftvelocity in temporal variability of cloud hydrometeor number, P. Natl. Acad.Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016. 
[7] Genz, C., Schrödner, R., Heinold, B., Henning, S., Baars, H., Spindler, G., and Tegen, I.: Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments, Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020, 2020. 
[8] Xu, W. Q., Han, T. T., Du, W., Wang, Q. Q., Chen, C., Zhao, J.: Effects ofaqueous-phase and photochemical processing on secondary organic aerosolformation and evolution in Beijing, China, Environ. Sci. Tech., 51, 762–770,https://doi.org/10.1021/acs.est.6b04498, 2017. 
[9] Abdul-Razzak, H. and Ghan, S.: A parametreization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000. 
[10] Yue, D. L., Hu, M., Zhang, R. Y., Wu, Z. J., Su, H., Wang, Z. B., Peng, J.F., He, L. Y., Huang, X. F., Gong, Y. G., and Wiedensohler, A.: Potentialcontribution of new particle formation to cloud condensation nuclei inBeijing, Atmos. Environ., 45, 6070–6077,https://doi.org/10.1016/j.atmosenv.2011.07.037, 2011. 
[11] Abdul-Razzak, H., Ghan, S., and Rivera-Carpio, C.: A parametreization ofaerosol activation: 1. Single aerosol types, J. Geophys. Res., 103,6123–6131, 1998. 
[12] Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus,47, 281–300, 1995. 
[13] Asmi, E., Kivekäs, N., Kerminen, V.-M., Komppula, M., Hyvärinen, A.-P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959–12972, https://doi.org/10.5194/acp-11-12959-2011, 2011. 
[14] Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds, Atmos. Chem. Phys., 5, 1205–1222, https://doi.org/10.5194/acp-5-1205-2005, 2005. 
[15] Merikanto, J., Spracklen, D. V., Pringle, K. J., and Carslaw, K. S.: Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000, Atmos. Chem. Phys., 10, 695–705, https://doi.org/10.5194/acp-10-695-2010, 2010. 
[16] Tao, J., Kuang, Y., Ma, N., Hong, J., Sun, Y., Xu, W., Zhang, Y., He, Y., Luo, Q., Xie, L., Su, H., and Cheng, Y.: Secondary aerosol formation alters CCN activity in the North China Plain, Atmos. Chem. Phys., 21, 7409–7427, https://doi.org/10.5194/acp-21-7409-2021, 2021. 
[17] Morales, R. and Nenes, A.: Characteristic updrafts for computingdistribution-averaged cloud droplet number and stratocumulus cloudproperties, J. Geophys. Res., 115, D18220,https://doi.org/10.1029/2009JD013233, 2010. 
[18] Meskhidze, N., Nenes, A., Conant, W., and Seinfeld, J.: Evaluation of a new clouddroplet activation parameterization with in situ data from CRYSTAL-FACE andCSTRIPE, J. Geophys. Res., 110, D16202,https://doi.org/10.1029/2004JD005703, 2005. 
[19] Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G., Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., and Tombrou, M.: New particle formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet number, Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, 2017. 
[20] Wu, Z. J., Hu, M., and Yue, D. L.: Evolution of particle number sizedistribution in an urban atmosphere during episodes of heavy pollution andnew particle formation, Sci. China Earth Sci., 54, 1772–1778, https://doi.org/10.1007/s11430-011-4227-9, 2011. 
[21] Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775–4793, https://doi.org/10.5194/acp-10-4775-2010, 2010. 
[22] Wu, Z. J., Poulain, L., Birmili, W., Größ, J., Niedermeier, N., Wang, Z. B., Herrmann, H., and Wiedensohler, A.: Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements, Atmos. Chem. Phys., 15, 13071–13083, https://doi.org/10.5194/acp-15-13071-2015, 2015. 
[23] Shi, J., Khan, A., Harrison, R.: Measurements of ultrafine particleconcentration and size distribution in the urban atmosphere, Sci. Tot. Environ., 235, 51–64,https://doi.org/10.1016/S0048-9697(99)00189-8, 1999. 
[24] Hudson, J. G. , Noble, S., and Tabor, S.: Cloud supersaturations from CCNspectra hoppel minima, J. Geophys. Res.-Atmos., 120,3436–3452, https://doi.org/10.1002/2014JD022669, 2015. 
[25] Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites, Atmos. Chem. Phys., 19, 5679–5694, https://doi.org/10.5194/acp-19-5679-2019, 2019. 
[26] Harrison, R. M., Beddows, D. and Dall'Osto, M.: PMF Analysis of Wide-RangeParticle Size Spectra Collected on a Major Highway, Environ. Sci. Tech., 45, 5522, https://doi.org/10.1021/es201998m, 2011. 
[27] Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.: Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, 2015. 
[28] Wu, Z., Hu, M., Liu, S., Wehner, B., and Wiedensohler, A.: Particle numbersize distribution in the urban atmosphere of Beijing, China, Atmos.Environ., 42, 7967–7980,https://doi.org/10.1016/j.atmosenv.2008.06.022, 2008. 
[29] Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,and Onasch, T. B.: An aerosol chemical speciation monitor (ACSM) for routinemonitoring of the composition and mass concentrations of ambient aerosol,Aerosol Sci. Tech., 45, 780-794,https://doi.org/10.1080/02786826.2011.560211, 2011. 
[30] Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.E., Lehtipalo, K., Dal, Maso, M., Aalto, P., Junninen, H., Paasonen, P.,Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.:Measurement of the nucleation of atmospheric aerosol particles, Nat.Protocol., 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012. 
[31] Cai, M., Liang, B., Sun, Q., Zhou, S., Chen, X., Yuan, B., Shao, M., Tan, H., and Zhao, J.: Effects of continental emissions on cloud condensation nuclei (CCN) activity in the northern South China Sea during summertime 2018, Atmos. Chem. Phys., 20, 9153–9167, https://doi.org/10.5194/acp-20-9153-2020, 2020. 
[32] Leaitch, W. R., Strapp, J. W., and Isaac, G. A.: Cloud droplet nucleationand cloud scavenging of aerosol sulphate in polluted atmospheres, Tellus B,38, 328–344, https://doi.org/10.1111/j.1600-0889.1986.tb00258.x ,1986 
[33] Stanier, C., Khlystov, A., and Pandis, S.: Ambient aerosol size distributionsand number concentrations measured during the Pittsburgh Air Quality Study(PAQS), Atmos. Environ., 38, 3275–3284,https://doi.org/10.1016/j.atmosenv.2004.03.020, 2004. 
[34] Leino, K., Nieminen, T., Manninen, H. E., Petäjä, T., Kerminen, V.M., and Kulmala, M.: Intermediate ions as a strong indicator of newparticleformation bursts in a boreal forest, Boreal Environ. Res., 21,274–286, 2016. 
[35] Nenes, A. and Seinfeld, J. H.: Parameterization of cloud droplet formationin global climate models, J. Geophys. Res, 108, 4415,https://doi.org/10.1029/2002JD002911, 2003. 
[36] Nenes, A., Chan, S., Abdul-Razzak, H., Chuang, P., and Seinfeld, J. H.:Kinetic limitations on cloud droplet formation and impact on cloud albedo,Tellus B, 53, 133–149, https://doi.org/10.3402/tellusb.v53i2.16569, 2001. 
[37] Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12, 12037–12059, https://doi.org/10.5194/acp-12-12037-2012, 2012. 
[38] Wiedensohler, A., Chen, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof,M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo,Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. S.,Rose, D., Su, H., and Pöschl, U.: Rapid aerosol particle growth andincrease of cloud condensation nucleus activity by secondary aerosolformation and condensation: A case study for regional air pollution innortheastern China, J. Geophys. Res., 114, D00G08,https://doi.org/10.1029/2008JD010884, 2008. 
[39] Zhang, F.: Evaluation of the contribution of new particle formation to cloud droplet in urban atmosphere [data set], available at: https://data.mendeley.com/datasets/hkkzbn4zv3/1, last access: 4 January 2021. 
[40] Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,climate, and the hydrological cycle, Science, 294, 2119–2124,https://doi.org/10.1126/science.1064034, 2001. 
[41] Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U., and Feichter, J.: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733–10752, https://doi.org/10.5194/acp-10-10733-2010, 2010. 
[42] Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,Worsnop, D. R., and Sun, Y. L.: Understanding atmospheric organic aerosolsvia factor analysis of aerosol mass spectrometry: A review, Anal. Bioanal. Chem., 401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y, 2011. 
[43] Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012. 
[44] Kerminen, V. M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., andBianchi, F.: Atmospheric new particle formation and growth: review of fieldobservations, Environ. Res. Lett., 13, 103003, https://doi.org/10.1088/1748-9326/aadf3c, 2018. 
[45] Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., Xu, W., Sun, Y., Cribb, M., and Li, Z.: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing, Atmos. Chem. Phys., 18, 6907–6921, https://doi.org/10.5194/acp-18-6907-2018, 2018. 
[46] Wang, Y., Zhang, F., Li, Z., Tan, H., Xu, H., Ren, J., Zhao, J., Du, W., and Sun, Y.: Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing, Atmos. Chem. Phys., 17, 5239–5251, https://doi.org/10.5194/acp-17-5239-2017, 2017. 
[47] Collins, D. R., Flagan, R. C., and Seinfeld, J. H.: Improved inversion ofscanning DMA data, Aerosol Sci. Tech., 36, 1–9, 2002. 
[48] Wang, S. C. and Flagan, R. C.: Scanning Electrical Mobility Spectrometer,Aerosol Sci. Tech., 13, 230–240, https://doi.org/10.1080/02786829008959441, 1990. 
[49] Zheng, Y. T., Rosenfeld, D., and Li, Z. Q.: Satellite Inference of Thermals andCloud-Base Updraft Speeds Based on Retrieved Surface and Cloud-BaseTemperatures, J. Atmos. Sci., 72, 2411–2428,https://doi.org/10.1175/JAS-D-14-0283.1, 2015. 
[50] Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., and Mihalopoulos, N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean, Atmos. Chem. Phys., 19, 6185–6203, https://doi.org/10.5194/acp-19-6185-2019, 2019. 
[51] Dal, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P.,and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols:eight years of aerosol size distribution data from SMEAR II,Hyytiälä, Finland, Boreal Environ. Res., 10, 323–336, 2005. 
[52] Dall'Osto, M., Thorpe, A., Beddows, D. C. S., Harrison, R. M., Barlow, J. F., Dunbar, T., Williams, P. I., and Coe, H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem. Phys., 11, 6623–6637, https://doi.org/10.5194/acp-11-6623-2011, 2011. 
[53] Liu, C., Wang, T., Rosenfeld, D., Zhu, Y., Yue, Z., and Yu, X.: Anthropogeniceffects on cloud condensation nuclei distribution and rain initiation inEast Asia, Geophys. Res. Lett., 47, e2019GL086184,https://doi.org/10.1029/2019GL086184, 2019. 
[54] Li, Z., Feng, N., Fan, J., Liu, Y., andDing, Y.: Long-term impacts of aerosols on thevertical development of clouds and precipitation, Nat. Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313, 2011. 
[55] Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,Zhang, H., and Zhu, B.: Aerosols and boundary-layer interactions and impacton air quality, Natl. Sci. Rev., 4, 810–833,https://doi.org/10.1093/nsr/nwx117, 2017. 
[56] Seinfeld, J. H., Bretherton, C. S., Carslaw, K. S., Coe, H., DeMott, P. J.,Dunlea, E. J., Feingold, G., Ghan, S. J., Guenther, A.B., Kahn, R. A.,Kracunas, I. P., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J.E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J.,Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood R.: Improving OurFundamental Understanding of the Role of Aerosol-Cloud Interactions in theClimate System, P. Nat. Acad. Sci. USA, 113, 5781–5790,https://doi.org/10.1073/pnas.1514043113, 2016. 
[57] Li, Y., Zhang, F., Li, Z., Sun, L., Wang, Z., Li, P., Sun, Y., Ren, J., Wang, Y., andCribb, M.: Influences of aerosol physiochemical properties and new particleformation on CCN activity from observation at a suburban site of China,Atmos. Res., 188, 80–89,https://doi.org/10.1016/j.atmosres.2017.01.009, 2017. 
[58] Rose, C., Sellegri, K., Moreno, I., Velarde, F., Ramonet, M., Weinhold, K., Krejci, R., Andrade, M., Wiedensohler, A., Ginot, P., and Laj, P.: CCN production by new particle formation in the free troposphere, Atmos. Chem. Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, 2017. 
[59] Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao, C., Fan, T., Yang, X., and Wang, Q.: Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China, Atmos. Chem. Phys., 16, 5413–5425, https://doi.org/10.5194/acp-16-5413-2016, 2016. 
[60] Köhler, H.: The nucleus in and the growth of hygroscopic droplets,Transactions of the Faraday Society, 32, 1152–1161,https://doi.org/10.1039/tf9363201152, 1936. 
[61] Paatero, P. and Tapper, U.: Positive matrix factorization: A nonnegativefactor model with optimal utilization of error-estimates of data values,J. Citation Rep., 5, 112–126, https://doi.org/10.1002/env.3170050203, 1994. 
[62] Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., and Li, Z.:Uncertainty in predicting CCN activity of aged and primary aerosols, J. Geophys. Res.-Atmos., 122, 11723–11736, https://doi.org/10.1002/2017JD027058, 2017. 
[63] Peng, J. F., Hu, M., Wang, Z. B., Huang, X. F., Kumar, P., Wu, Z. J., Guo, S., Yue, D. L., Shang, D. J., Zheng, Z., and He, L. Y.: Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production, Atmos. Chem. Phys., 14, 10249–10265, https://doi.org/10.5194/acp-14-10249-2014, 2014. 
[64] Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J., Li, P., Ren, G., and Fan, T.: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp campaign: implications for cloud condensation nuclei parameterization, Atmos. Chem. Phys., 14, 13423–13437, https://doi.org/10.5194/acp-14-13423-2014, 2014. 
[65] Kulmala, M. and Kerminen, V. M.: On the formation and growth of atmosphericnanoparticles, Atmos. Res., 90, 132–150,https://doi.org/10.1016/j.atmosres.2008.01.005, 2008. 
[66] Peng,Y., Dong, Y., and Li, X. M.: Different Characteristics of New ParticleFormation Events at Two Suburban Sites in Northern China, Atmosphere, 8,258, https://doi.org/10.3390/atmos8120258, 2017. 
[67] Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J.Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)0342.0.CO;2, 1977. 
[68] Duan, J., Wang, Y., Xie, X., Li, M., Tao, J., Wu, Y., Cheng, T.: Influenceof pollutants on activity of aerosol cloud condensation nuclei (CCN) duringpollution and post-rain periods in Guangzhou, southern China, Sci. Tot. Environ., 642, 1008–1019, https://doi.org/10.1016/j.scitotenv.2018.06.053, 2018. 
[69] Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., and Lampert, A.: ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer, Atmos. Meas. Tech., 8, 1627–1639, https://doi.org/10.5194/amt-8-1627-2015, 2015. 
[70] Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,Science, 245, 1227–1230, 1989. 
[71] Fan, J., Leung, R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J., and Yan, H.:Microphysical effects determine macrophysical response for aerosol impactson deep convective clouds, P. Natl. Aacad. Sci. USA, 110, 4581–4590,https://doi.org/10.1073/pnas.1316830110, 2013. 
[72] Zhang, F., Ren, J., Fan, T., Chen, L., Xu, W., and Sun, Y.: Significantlyenhanced aerosol CCN activity and number concentrations bynucleation haze events: A case study in urban Beijing, J.Geophys. Res.-Atmos., 124, 14102–14113, https://doi.org/10.1029/ 2019JD031457, 2019. 
[73] Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., Jin, X., Ren, J., Wang, Y., Wu, H., Li, S., Sun, Y., and Li, Z.: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions, Atmos. Chem. Phys., 20, 915–929, https://doi.org/10.5194/acp-20-915-2020, 2020. 
[74] Khvorostyanov, V. I., and Curry, J. A.: A simple analytical model of aerosolproperties with account for hygroscopic growth: 1. Equilibrium size spectraand cloud condensation nuclei activity spectra, J. Geophys. Res., 104,2175–2184, https://doi.org/10.1029/98JD02687, 1999. 
[75] Fountoukis, C. and Nenes, A.: Continued development of a cloud dropletformation parameterization for global climate models, J. Geophys. Res., 110,D11212, https://doi.org/10.1029/2004JD005591, 2005. 
[76] Martin, G. and Johnson, D.: The measurement and parameterization of effectiveradius of droplets in warm stratocumulus clouds, J. Atmos. Sci., 51, 1823–1842,[77] 3C1823:TMAPOE
[78] 3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2, 1994. 
[79] Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y., Teich, M., Spindler, G., Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new particle formation events in the North China Plain, Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, 2016. 
[80] Liu, J., Zhang, F., Xu, W., Sun, Y., Chen, L., and Li, S.: Hygroscopicity oforganic aerosols linked to formation mechanisms. Geophys. Res. Lett., 48, e2020GL091683, https://doi.org/10.1029/2020GL091683, 2021. 
[81] Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. 
文献评价指标
浏览 28次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次