首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-29
Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts
Xiaolong Fan 1 Jing Cai 2 Chao Yan 2 Jian Zhao 2 Yishuo Guo 1 Chang Li 1 Kaspar R. Dällenbach 2 Feixue Zheng 1 Zhuohui Lin 1 Biwu Chu 3 , 4 Yonghong Wang 2 Lubna Dada 2 Qiaozhi Zha 2 Wei Du 2 Jenni Kontkanen 2 Theo Kurtén 5 Siddhart Iyer 6 Joni T. Kujansuu 1 , 2 Tuukka Petäjä 2 Douglas R. Worsnop 7 Veli-Matti Kerminen 2 Yongchun Liu 1 Federico Bianchi 2 Yee Jun Tham 8 , 2 Lei Yao 2 Markku Kulmala 1 , 2 , 9
Show affiliations
DOI:10.5194/acp-21-11437-2021
PDF
摘要

Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, the majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas remain scarce, thus limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured in urban Beijing, China, during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranging from a minimum value at 1 × 108 molecules cm−3 (4 ppt) and 4 × 107 molecules cm−3 (1 ppt) up to 6 × 109 molecules cm−3 (222 ppt) and 1 × 109 molecules cm−3 (37 ppt), respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB and levels of gaseous HNO3. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas–particle partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reactions of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 2 × 104 molecules cm−3 s−1 and 8 × 104 molecules cm−3 s−1, respectively. The production rate of atomic Br (via HBr + OH) is 2–3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. On polluted days, the production rates of atomic Cl and Br are faster than those on clean days. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities and may provide a plausible explanation for the widespread halogen chemistry, which could affect the atmospheric oxidation in China.

授权许可

Copyright: © 2021 Xiaolong Fan et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Xiaolong Fan,Jing Cai,Chao Yan,Jian Zhao,Yishuo Guo,Chang Li,Kaspar R. Dällenbach,Feixue Zheng,Zhuohui Lin,Biwu Chu,Yonghong Wang,Lubna Dada,Qiaozhi Zha,Wei Du,Jenni Kontkanen,Theo Kurtén,Siddhart Iyer,Joni T. Kujansuu,Tuukka Petäjä,Douglas R. Worsnop,Veli-Matti Kerminen,Yongchun Liu,Federico Bianchi,Yee Jun Tham,Lei Yao,Markku Kulmala. Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: roles of aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155–13171, https://doi.org/10.5194/acp-18-13155-2018, 2018. 
[2] Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, 2018. 
[3] Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J.,Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P. K., andMiddlebrook, A. M.: A large atomic chlorine source inferred frommid-continental reactive nitrogen chemistry, Nature, 464, 271–274, 2010. 
[4] Priestley, M., Breton, M., Bannan, T., Leather, K., Bacak, A., ReyesVillegas, E., Vocht, F., Shallcross, B., Brazier, T., Khan, A., Allan, J.,Shallcross, D., Coe, H., and Percival, C.: Observations of Isocyanate,Amide, Nitrate, and Nitro Compounds From an Anthropogenic Biomass BurningEvent Using a ToF-CIMS, J. Geophys. Res.-Atmos., 123, 7687–7704,https://doi.org/10.1002/2017JD027316, 2018. 
[5] Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., Daellenbach, K. R., Bianchi, F., Kokkonen, T. V., Liu, Y., Kujansuu, J., Kerminen, V.-M., Petäjä, T., Wang, L., Jiang, J., and Kulmala, M.: Variation of size-segregated particle number concentrations in wintertime Beijing, Atmos. Chem. Phys., 20, 1201–1216, https://doi.org/10.5194/acp-20-1201-2020, 2020. 
[6] Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G.,Bohn, B., Lelieveld, J., and Crowley, J. N.: Significant concentrations ofnitryl chloride observed in rural continental Europe associated with theinfluence of sea salt chloride and anthropogenic emissions, Geophys.Res. Lett., 39, L10811, https://doi.org/10.1029/2012GL051912, 2012. 
[7] Eisele, F. L. and Tanner, D. J.: Measurement of the Gas-Phase Concentrationof H2SO4 and Methane Sulfonic-Acid and Estimates ofH2SO4 Production and Loss in the Atmosphere, J. Geophys.Res.-Atmos., 98, 9001–9010, 1993. 
[8] Lammel, G., Röhrl, A., and Schreiber, H.: Atmospheric lead and brominein Germany, Environ. Sci. Pollut. Res., 9, 397,https://doi.org/10.1007/BF02987589, 2002. 
[9] Peng, X., Wang, W., Xia, M., Chen, H., Ravishankara, A., Li, Q., Alfonso,S.-L., Liu, P., Zhang, F., Zhang, C., Xue, L., Wang, X., George, C., Wang,J., Mu, Y., Chen, J.-M., and Tao, W.: An unexpected large continental sourceof reactive bromine and chlorine with significant impact on wintertime airquality, Natl. Sci. Rev., nwaa304, https://doi.org/10.1093/nsr/nwaa304,​​​​​​​ 2020. 
[10] Yao, L., Fan, X., Yan, C., Kurten, T., Daellenbach, K. R., Li, C., Wang, Y.,Guo, Y., Dada, L., Rissanen, M. P., Cai, J., Tham, Y. J., Zha, Q., Zhang,S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J., Chan, T., Shen, J.,Kujansuu, J. T., Kangasluoma, J., Jiang, J., Wang, L., Worsnop, D. R.,Petaja, T., Kerminen, V. M., Liu, Y., Chu, B., He, H., Kulmala, M., andBianchi, F.: Unprecedented Ambient Sulfur Trioxide (SO3) Detection:Possible Formation Mechanism and Atmospheric Implications, Environ.Sci. Tech. Let., 7, 809–818, https://doi.org/10.1021/acs.estlett.0c00615,2020. 
[11] Kontkanen, J., Deng, C., Fu, Y., Dada, L., Zhou, Y., Cai, J., Daellenbach, K. R., Hakala, S., Kokkonen, T. V., Lin, Z., Liu, Y., Wang, Y., Yan, C., Petäjä, T., Jiang, J., Kulmala, M., and Paasonen, P.: Size-resolved particle number emissions in Beijing determined from measured particle size distributions, Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, 2020. 
[12] Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T.E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G.,Midgley, P., Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C. M.,Koropalov, V., Barrie, L. A., and Li, Y. F.: Composite global emissions ofreactive chlorine from anthropogenic and natural sources: Reactive ChlorineEmissions Inventory, J. Geophys. Res.-Atmos., 104,8429–8440, https://doi.org/10.1029/1998jd100084, 1999. 
[13] Crisp, T., Lerner, B., Williams, E., Quinn, P., Bates, T., and Bertram, T.:Observations of gas-phase hydrochloric acid in the polluted marine boundarylayer, J. Geophys. Res.-Atmos., 119, 6897–6915, https://doi.org/10.1002/2013JD020992, 2014. 
[14] Chu, B. W., Dada, L., Liu, Y. C., Yao, L., Wang, Y. H., Du, W., Cai, J.,Dallenbach, K. R., Chen, X. M., Simonen, P., Zhou, Y., Deng, C. J., Fu, Y.Y., Yin, R. J., Li, H. Y., He, X. C., Feng, Z. M., Yan, C., Kangasluoma, J.,Bianchi, F., Jiang, J. K., Kujansuu, J., Kerminen, V. M., Petaja, T., He,H., and Kulmala, M.: Particle growth with photochemical age from newparticle formation to haze in the winter of Beijing, China, Sci. TotalEnviron., 753, 142207, https://doi.org/10.1016/j.scitotenv.2020.142207​​​​​​​, 2021. 
[15] Chen, D., Huey, L. G., Tanner, D. J., Salawitch, R. J., Anderson, D. C.,Wales, P. A., Pan, L. L., Atlas, E. L., Hornbrook, R. S., Apel, E. C.,Blake, N. J., Campos, T. L., Donets, V., Flocke, F. M., Hall, S. R.,Hanisco, T. F., Hills, A. J., Honomichl, S. B., Jensen, J. B., Kaser, L.,Montzka, D. D., Nicely, J. M., Reeves, J. M., Riemer, D. D., Schauffler, S.M., Ullmann, K., Weinheimer, A. J., and Wolfe, G. M.: Airborne measurementsof BrO and the sum of HOBr and Br2 over the Tropical West Pacific from1 to 15 km during the CONvective TRansport of Active Species in the Tropics(CONTRAST) experiment, J. Geophys. Res-Atmos., 121, 12560–12578,https://doi.org/10.1002/2016JD025561, 2016. 
[16] Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010. 
[17] Tian, Q., Xu, D., Chai, Z., Lu, Y., and Xiong, Y.: Analysis on the organicbromine in the atmosphere in Beijing, Journal of Nuclear and Radiochemistry,27, 236–238​​​​​​​, https://doi.org/10.3969/j.issn.0253-9950.2005.04.010, 2005. 
[18] Hoffmann, E., Tilgner, A., Wolke, R., and Herrmann, H.: Enhanced Chlorineand Bromine Atom Activation by Hydrolysis of Halogen Nitrates from MarineAerosols at Polluted Coastal Areas, Environ. Sci. Technol., 53, 771–778,https://doi.org/10.1021/acs.est.8b05165, 2018. 
[19] Vigouroux, C., Stavrakou, T., Whaley, C., Dils, B., Duflot, V., Hermans, C., Kumps, N., Metzger, J.-M., Scolas, F., Vanhaelewyn, G., Müller, J.-F., Jones, D. B. A., Li, Q., and De Mazière, M.: FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21 S, 55 E) and comparisons with model data, Atmos. Chem. Phys., 12, 10367–10385, https://doi.org/10.5194/acp-12-10367-2012, 2012. 
[20] Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O'Connor, F., andSavage, N.: Tropospheric bromine chemistry and its impacts on ozone: A modelstudy, J. Geophys. Res., 110, D23311, https://doi.org/10.1029/2005JD006244, 2005. 
[21] Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D.,Campuzano-Jost, P., Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P.,Weber, R., Dibb, J., Campos, T., Jimenez, J. L., Brown, S. S., and Thornton,J. A.: Wintertime Gas-Particle Partitioning and Speciation of InorganicChlorine in the Lower Troposphere Over the Northeast United States andCoastal Ocean, J. Geophys. Res.-Atmos., 123,12897–12916, https://doi.org/10.1029/2018JD028786, 2018. 
[22] Yang, X., Wang, T., Xia, M., Gao, X., Li, Q., Zhang, N., Gao, Y., Lee, S.,Wang, X., Xue, L., Yang, L., and Wang, W.: Abundance and origin of fineparticulate chloride in continental China, Sci. Total Environ.,624, 1041–1051, https://doi.org/10.1016/j.scitotenv.2017.12.205, 2018. 
[23] He, K. B., Yang, F. M., Ma, Y. L., Zhang, Q., Yao, X. H., Chan, C. K.,Cadle, S., Chan, T., and Mulawa, P.: The characteristics of PM2.5 inBeijing, China, Atmos. Environ., 35, 4959–4970,https://doi.org/10.1016/s1352-2310(01)00301-6, 2001. 
[24] Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in thepolluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,https://doi.org/10.1038/ngeo177, 2008. 
[25] Moyers, J. L. and Duce, R. A.: Gaseous and particulate bromine in themarine atmosphere, J. Geophys. Res., 77, 5330–5338,https://doi.org/10.1029/JC077i027p05330, 1972. 
[26] Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J.,Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M.,Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F.,Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V. M., Petaja, T.,Worsnop, D. R., Kulmala, M., and Wang, L.: Atmospheric new particleformation from sulfuric acid and amines in a Chinese megacity, Science, 361,278–281, https://doi.org/10.1126/science.aao4839, 2018. 
[27] Nolt, I. G., Ade, P., Alboni, F., Carli, B., Carlotti, M., Cortesi, U.,Epifani, M., Griffin, M. J., Hamilton, P. A., Lee, C., Lepri, G.,Mencaraglia, F., Murray, A. G., Park, J. H., Park, K., Raspollini, P.,Ridolfi, M., and Vanek, M. D.: Stratospheric HBr concentration profileobtained from far-infrared emission spectroscopy, Geophys. Res.Lett., 24, 281–284, https://doi.org/10.1029/97GL00034, 1997. 
[28] Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of ClNO2in a Mid-Continental Urban Environment, Environ. Sci. Technol., 45,8889–8896, https://doi.org/10.1021/es201955u, 2011. 
[29] Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017. 
[30] Calvert, J. and Lindberg, S.: The potential influence of iodine-containingcompounds on the chemistry of the troposphere in the polar spring. II.Mercury depletion, Atmos. Environ., 38, 5105–5116, 2004. 
[31] Hu, W., Hu, M., Hu, W., Jimenez, J., Yuan, B., Chen, W., Wang, M., Wu, Y.,Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition,sources, and aging process of submicron aerosols in Beijing: Contrastbetween summer and winter, J. Geophys. Res.-Atmos.,121, 1955–1977, https://doi.org/10.1002/2015JD024020, 2016. 
[32] Cai, J., Chu, B., Yao, L., Yan, C., Heikkinen, L. M., Zheng, F., Li, C., Fan, X., Zhang, S., Yang, D., Wang, Y., Kokkonen, T. V., Chan, T., Zhou, Y., Dada, L., Liu, Y., He, H., Paasonen, P., Kujansuu, J. T., Petäjä, T., Mohr, C., Kangasluoma, J., Bianchi, F., Sun, Y., Croteau, P. L., Worsnop, D. R., Kerminen, V.-M., Du, W., Kulmala, M., and Daellenbach, K. R.: Size-segregated particle number and mass concentrations from different emission sources in urban Beijing, Atmos. Chem. Phys., 20, 12721–12740, https://doi.org/10.5194/acp-20-12721-2020, 2020. 
[33] Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry,Chem. Soc. Rev., 41, 6405–6447, https://doi.org/10.1039/C2CS35181A, 2012. 
[34] Cai, J., Wang, J., Zhang, Y., Tian, H., Zhu, C., Gross, D. S., Hu, M., Hao,J., He, K., and Wang, S.: Source apportionment of Pb-containing particles inBeijing during January 2013, Environ. Pollut., 226, 30–40, https://doi.org/10.1016/j.envpol.2017.04.004,​​​​​​​ 2017. 
[35] Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China, Atmos. Chem. Phys., 20, 6147–6158, https://doi.org/10.5194/acp-20-6147-2020, 2020. 
[36] Tham, Y. J., Yan, C., Xue, L., Zha, Q., Wang, X., and Wang, T.: Presence ofhigh nitryl chloride in Asian coastal environment and its impact onatmospheric photochemistry, Chinese Sci. Bull., 59, 356–359,https://doi.org/10.1007/s11434-013-0063-y, 2014. 
[37] Hara, H., Kato, T., and Matsushita, H.: The Mechanism of Seasonal Variationin the Size Distributions of Atmospheric Chloride and Nitrate Aerosol inTokyo, B. Chem. Soc. Jpn., 62, 2643–2649,https://doi.org/10.1246/bcsj.62.2643, 1989. 
[38] Graedel, T. E. and Keene, W. C.: Tropospheric budget of reactive chlorine,Global Biogeochem. Cy., 9, 47–77, 1995. 
[39] Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959–14977, https://doi.org/10.5194/acp-16-14959-2016, 2016. 
[40] Sander, R., Keene, W. C., Pszenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E., Cainey, J. M., Crutzen, P. J., Duce, R. A., Hönninger, G., Huebert, B. J., Maenhaut, W., Mihalopoulos, N., Turekian, V. C., and Van Dingenen, R.: Inorganic bromine in the marine boundary layer: a critical review, Atmos. Chem. Phys., 3, 1301–1336, https://doi.org/10.5194/acp-3-1301-2003, 2003. 
[41] Bedjanian, Y. and Poulet, G.: Kinetics of halogen oxide radicals in thestratosphere, Chem. Rev., 103, 4639, https://doi.org/10.1021/cr0205210,​​​​​​​ 2003. 
[42] Wren, S. N., Liggio, J., Han, Y., Hayden, K., Lu, G., Mihele, C. M., Mittermeier, R. L., Stroud, C., Wentzell, J. J. B., and Brook, J. R.: Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: a focus on isocyanic acid, hydrogen cyanide, and black carbon, Atmos. Chem. Phys., 18, 16979–17001, https://doi.org/10.5194/acp-18-16979-2018, 2018. 
[43] Saiz-Lopez, A., Lamarque, J.-F., Kinnison, D. E., Tilmes, S., Ordóñez, C., Orlando, J. J., Conley, A. J., Plane, J. M. C., Mahajan, A. S., Sousa Santos, G., Atlas, E. L., Blake, D. R., Sander, S. P., Schauffler, S., Thompson, A. M., and Brasseur, G.: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere, Atmos. Chem. Phys., 12, 3939–3949, https://doi.org/10.5194/acp-12-3939-2012, 2012. 
[44] Wang, Z., Yuan, B., Ye, C., Roberts, J., Wisthaler, A., Lin, Y., Li, T., Wu,C., Peng, Y., Wang, C., Wang, S., Yang, S., Wang, B., Qi, J., Wang, C.,Song, W., Hu, W., Wang, X., Xu, W., Ma, N., Kuang, Y., Tao, J., Zhang, Z.,Su, H., Cheng, Y., Wang, X., and Shao, M.: High Concentrations ofAtmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China,Environ. Sci. Tech., 54, 11818–11826, https://doi.org/10.1021/acs.est.0c02843, 2020. 
[45] Liu, X., Qu, H., Huey, L. G., Wang, Y., Sjostedt, S., Zeng, L., Lu, K., Wu,Y., Hu, M., Shao, M., Zhu, T., and Zhang, Y.: High Levels of DaytimeMolecular Chlorine and Nitryl Chloride at a Rural Site on the North ChinaPlain, Environ. Sci. Technol., 51, 9588–9595, https://doi.org/10.1021/acs.est.7b03039, 2017. 
[46] Gard, E. E., Kleeman, M. J., Gross, D. S., Hughes, L. S., Allen, J. O.,Morrical, B. D., Fergenson, D. P., Dienes, T., E. Gälli, M., Johnson, R.J., Cass, G. R., and Prather, K. A.: Direct Observation of HeterogeneousChemistry in the Atmosphere, Science, 279, 1184,https://doi.org/10.1126/science.279.5354.1184, 1998. 
[47] Manö, S. and Andreae, M. O.: Emission of Methyl Bromide from BiomassBurning, Science, 263, 1255–1257, 1994. 
[48] Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361–12378, https://doi.org/10.5194/acp-17-12361-2017, 2017. 
[49] Rotermund, M. K., Bense, V., Chipperfield, M. P., Engel, A., Grooß, J.-U., Hoor, P., Hüneke, T., Keber, T., Kluge, F., Schreiner, B., Schuck, T., Vogel, B., Zahn, A., and Pfeilsticker, K.: Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: Insights into the transport pathways and total bromine, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-202, in review, 2021. 
[50] Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007. 
[51] Bannan, T. J., Khan, M. A. H., Le Breton, M., Priestley, M., Worrall, S. D.,Bacak, A., Marsden, N. A., Lowe, D., Pitt, J., Allen, G., Topping, D., Coe,H., McFiggans, G., Shallcross, D. E., and Percival, C. J.: A Large Source ofAtomic Chlorine From ClNO2 Photolysis at a U.K. Landfill Site,Geophys. Res. Lett., 46, 8508–8516, https://doi.org/10.1029/2019GL083764, 2019. 
[52] Glasow, R. V. and Crutzen, P. J.: Tropospheric Halogen Chemistry, Treatiseon Geochemistry, 5, 19–69, 2014. 
[53] Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in thetroposphere, Chem. Soc. Rev., 41, 6448–6472, https://doi.org/10.1039/c2cs35208g, 2012. 
[54] McNamara, S. M., Kolesar, K. R., Wang, S., Kirpes, R. M., May, N. W.,Gunsch, M. J., Cook, R. D., Fuentes, J. D., Hornbrook, R. S., Apel, E. C.,China, S., Laskin, A., and Pratt, K. A.: Observation of Road Salt AerosolDriving Inland Wintertime Atmospheric Chlorine Chemistry, ACS CentralScience, 6, 684–694, https://doi.org/10.1021/acscentsci.9b00994, 2020. 
[55] Fu, X., Wang, T., Wang, S., Zhang, L., Cai, S., Xing, J., and Hao, J.:Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloridein China, Environ. Sci. Technol., 52, 1644–1654, 2018. 
[56] Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation ofchemically active chlorine compounds by reactions of atmospheric NaClparticles with gaseous N2O5 and ClONO2, Nature, 337, 241–244,https://doi.org/10.1038/337241a0, 1989. 
[57] Simpson, W., Brown, S., Alfonso, S. L., Thornton, J., and Glasow, R.:Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts, Chem.Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015. 
[58] Sarwar, G., Simon, H., Xing, J., and Mathur, R.: Importance of troposphericClNO2 chemistry across the Northern Hemisphere, Geophys. Res.Lett., 41, 4050–4058, https://doi.org/10.1002/2014GL059962, 2014. 
[59] Sherwen, T., Evans, M. J., Sommariva, R., Hollis, L. D. J., Ball, S. M.,Monks, P. S., Reed, C., Carpenter, L. J., Lee, J. D., Forster, G., Bandy,B., Reeves, C. E., and Bloss, W. J.: Effects of halogens on Europeanair-quality, Faraday Discuss., 200, 75–100, https://doi.org/10.1039/C7FD00026J, 2017. 
[60] Wang, Y. Q.: MeteoInfo: GIS software for meteorological data visualization and analysis, Meteorol. Appl., 21, 360–368, https://doi.org/10.1002/met.1345, 2014. 
[61] Artiglia, L., Edebeli, J., Orlando, F., Chen, S., Lee, M.-T., Corral Arroyo,P., Gilgen, A., Bartels-Rausch, T., Kleibert, A., Vazdar, M., Carignano, M.A., Francisco, J. S., Shepson, P. B., Gladich, I., and Ammann, M.: Asurface-stabilized ozonide triggers bromide oxidation at the aqueoussolution-vapour interface, Nat. Commun., 8, 700, https://doi.org/10.1038/s41467-017-00823-x,2017. 
[62] Wang, Y. Q.: An Open Source Software Suite for Multi-DimensionalMeteorological Data Computation and Visualisation, Journal of Open ResearchSoftware, 7, p. 21, https://doi.org/10.5334/jors.267, 2019. 
[63] Roberts, T., Dayma, G., and Oppenheimer, C.: Reaction Rates ControlHigh-Temperature Chemistry of Volcanic Gases in Air, Front. EarthSci., 7, 154​​​​​​​, https://doi.org/10.3389/feart.2019.00154, 2019. 
[64] Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019. 
[65] Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P.,Jimenez, J. L., McDuffie, E. E., Fibiger, D. L., Veres, P. R., Brown, S. S.,Campos, T. L., Weinheimer, A. J., Flocke, F. F., Norris, G., O'Mara, K.,Green, J. R., Fiddler, M. N., Bililign, S., Shah, V., Jaegle, L., andThornton, J. A.: Airborne Observations of Reactive Inorganic Chlorine andBromine Species in the Exhaust of Coal-Fired Power Plants, J. Geophys. Res.-Atmos., 123, 11225–11237, https://doi.org/10.1029/2018JD029284, 2018. 
[66] Fernandez, R. P., Salawitch, R. J., Kinnison, D. E., Lamarque, J.-F., and Saiz-Lopez, A.: Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection, Atmos. Chem. Phys., 14, 13391–13410, https://doi.org/10.5194/acp-14-13391-2014, 2014. 
[67] Arnold, S., Morris, R., Viggiano, A., and Jayne, J.: Ion chemistry relevantfor chemical ionization detection of SO3, J. Geophys. Res-Atmos., 100,14141–14146, https://doi.org/10.1029/95JD01004, 1995. 
[68] Leslie, M. D., Ridoli, M., Murphy, J. G., and Borduas-Dedekind, N.:Isocyanic acid (HNCO) and its fate in the atmosphere: a review,Environ. Sci.: Processes Impacts, 21, 793–808, https://doi.org/10.1039/C9EM00003H, 2019. 
[69] Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M.,Vlasenko, A., Li, S.-M., Gilman, J., de Gouw, J., Bon, D. M., Wagner, N. L.,Brown, S. S., and Thornton, J. A.: Nitryl Chloride and Molecular Chlorine inthe Coastal Marine Boundary Layer, Environ. Sci. Technol., 46, 10463–10470,https://doi.org/10.1021/es204632r, 2012. 
[70] Riedel, T. P., Wagner, N. L., Dubé, W. P., Middlebrook, A. M., Young, C.J., Öztürk, F., Bahreini, R., VandenBoer, T. C., Wolfe, D. E.,Williams, E. J., Roberts, J. M., Brown, S. S., and Thornton, J. A.: Chlorineactivation within urban or power plant plumes: Vertically resolvedClNO2 and Cl2 measurements from a tall tower in a pollutedcontinental setting, J. Geophys. Res.-Atmos., 118,8702–8715, https://doi.org/10.1002/jgrd.50637, 2013. 
[71] Adachi, K., Sedlacek, A. J., Kleinman, L., Springston, S. R., and Buseck, P.R.: Spherical tarball particles form through rapid chemical and physicalchanges of organic matter in biomass-burning smoke, P.Natl. Acad. Sci. USA, 116, 201900129, https://doi.org/10.1073/pnas.1900129116,​​​​​​​ 2019. 
[72] Li, Q., Badia, A., Wang, T., Sarwar, G., Fu, X., Zhang, L., Zhang, Q., Fung,J., Cuevas, C. A., Wang, S., Zhou, B., and Saiz-Lopez, A.: Potential Effectof Halogens on Atmospheric Oxidation and Air Quality in China, J.Geophys. Res.-Atmos., 125, e2019JD032058, https://doi.org/10.1029/2019JD032058,2020. 
[73] Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, 2018. 
[74] Faxon, C. B. and Allen, D. T.: Chlorine chemistry in urban atmospheres: areview, Environ. Chem., 10, 221–233, https://doi.org/10.1071/EN13026​​​​​​​, 2013. 
[75] Ferguson, E. E., Dunkin, D. B., and Fehsenfeld, F. C.: Reactions ofNO2- and NO3- with HCl and HBr, J. Chem.Phys., 57, 1459–1463, 1972. 
[76] Skalny, J., Mikoviny, T., Matejcik, S., and Mason, N.: An analysis of massspectrometric study of negative ions extracted from negative coronadischarge in air, Int. J. Mass Spectrom., 233, 317–324,https://doi.org/10.1016/j.ijms.2004.01.012, 2004. 
[77] Wang, D. S. and Ruiz, L. H.: Secondary organic aerosol from chlorine-initiated oxidation of isoprene, Atmos. Chem. Phys., 17, 13491–13508, https://doi.org/10.5194/acp-17-13491-2017, 2017. 
[78] Stavrakou, T., Müller, J.-F., Boersma, K. F., van der A, R. J., Kurokawa, J., Ohara, T., and Zhang, Q.: Key chemical NOx sink uncertainties and how they influence top-down emissions of nitrogen oxides, Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, 2013. 
[79] Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016. 
文献评价指标
浏览 170次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次