首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-29
Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during “APEC Blue”
Meng Gao 1 , 2 , 3 Yang Yang 1 Hong Liao 1 Bin Zhu 4 Yuxuan Zhang 5 Zirui Liu 6 Xiao Lu 7 Chen Wang 8 Qiming Zhou 2 Yuesi Wang 6 Qiang Zhang 9 Gregory R. Carmichael 8 Jianlin Hu 1
Show affiliations
DOI:10.5194/acp-21-11405-2021
PDF
摘要

Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. Although the changes in BC concentrations in response to emission reduction measures have been well documented, the influence of emission reductions on the light absorption properties of BC and its influence on BC-boundary-layer interactions has been less explored. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asia-Pacific Economic Cooperation (APEC) summit affect the mixing state and light absorption of BC, and the associated implications for BC-PBL interactions. We found that both the mass concentration of BC and the BC coating materials declined during the APEC week, which reduced the light absorption and light absorption enhancement (Eab) of BC. The reduced absorption aerosol optical depth (AAOD) during APEC was caused by both the decline in the mass concentration of BC itself (52.0 %), and the lensing effect of BC (48.0 %). The reduction in coating materials (39.4 %) contributed the most to the influence of the lensing effect, and the reduced light absorption capability (Eab) contributed 3.2 % to the total reduction in AAOD. Reduced light absorption of BC due to emission control during APEC enhanced planetary boundary layer height (PBLH) by 8.2 m. PM2.5 and O3 were found to have different responses to the changes in the light absorption of BC. Reduced light absorption of BC due to emission reductions decreased near-surface PM2.5 concentrations but near-surface O3 concentrations were enhanced in the North China Plain. These results suggest that current measures to control SO2, NOx, etc. would be effective in reducing the absorption enhancement of BC and in inhibiting the feedback of BC on the boundary layer. However, enhanced ground O3 might be a side effect of current emission control strategies. How to control emissions to offset this side effect of current emission control measures on O3 should be an area of further focus.

授权许可

Copyright: © 2021 Meng Gao et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Meng Gao,Yang Yang,Hong Liao,Bin Zhu,Yuxuan Zhang,Zirui Liu,Xiao Lu,Chen Wang,Qiming Zhou,Yuesi Wang,Qiang Zhang,Gregory R. Carmichael,Jianlin Hu. Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during “APEC Blue”. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Yang, Y., Ren, L., Li, H., Wang, H., Wang, P., Chen, L., Yue, X., and Hong,L.: Fast climate responses to aerosol emission reductions during theCOVID-19 pandemic, Geophys. Res. Lett., 47, e2020GL089788,https://doi.org/10.1029/2020GL089788, 2020. 
[2] Yang, Y., Smith, S. J., Wang, H., Mills, C. M., and Rasch, P. J.:Variability, timescales, and nonlinearity in climate responses to blackcarbon emissions, Atmos. Chem. Phys., 19, 2405–2420,https://doi.org/10.5194/acp-19-2405-2019, 2019. 
[3] Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemicalmechanism for long-scale applications, J. Geophys. Res.-Atmos., 104,30387–30415, https://doi.org/10.1029/1999JD900876, 1999. 
[4] Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
[5] Onasch, C. D. C. T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E.S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Katheryn R.,Kolesar, D. A. L., Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman, I.,Olfert, J. S., Petäjä, T., Quinn, P. K., Song, C., Subramanian,R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption Enhancements Dueto the Mixing State of Atmospheric Black Carbon, Science, 337,1078–1081, https://doi.org/10.1126/science.1223447, 2012. 
[6] Jacobson, M. Z.: Strong radiative heating due to the mixing state of blackcarbon in atmospheric aerosols, Nature, 409, 695–697,https://doi.org/10.1038/35055518, 2001. 
[7] Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Wentworth, G.R.,Michalski, G., Huang, X., and Wang, Y.: Source Apportionment of AerosolAmmonium in an Ammonia-Rich Atmosphere: An Isotopic Study of Summer Cleanand Hazy Days in Urban Beijing, J. Geophys. Res.-Atmos., 123, 5681–5689, 2018. 
[8] IPCC: Climate Change 2014: Synthesis Report, Contribution of Working GroupsI, II and III to the Fifth Assessment Report of the Intergovernmental Panelon Climate Change, edited by: Core Writing Team, Pachauri, R. K., andMeyer, L. A.,151 pp., IPCC, Geneva, Switzerland, 2014. 
[9] Fuller, K. A., Malm, W. C., and Kreidenweis, S. M.: Effects of mixing onextinction by carbonaceous particles Effects of mixing on extinction bycarbonaceous particles, J. Geophys. Res.-Atmos., 104, 15941–15954,https://doi.org/10.1029/1998JD100069, 1999. 
[10] Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on thesimulated East Asia summer monsoon, Q. J. Roy. Meteorol. Soc., 136,1481–1496, 2010. 
[11] Holben, B. N., Slutsker, T. I. E. I., Tar, D., Buis, J. P., Setxerj, I. I.A., Reagan, A., J, Y., Nakajima, T., Lavenu, F., Vemte, E., Jankowiak, I.,and Smirnozjt, A.: AERONET-A Federated Instrument Network and Data Archivefor Aerosol Characterization, Remote Sens. Environ., 66, 1–16, 1998. 
[12] Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy, M., and Zeng,L.: Markedly enhanced absorption and direct radiative forcing of blackcarbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113,4266–4271, https://doi.org/10.1073/pnas.1602310113, 2016. 
[13] Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, 2016b. 
[14] Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model forSimulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.,113, D13204, https://doi.org/10.1029/2007JD008782, 2008. 
[15] Gao, M., Carmichael, G. R., Wang, Y., Ji, D., Liu, Z., and Wang, Z.:Improving simulations of sulfate aerosols during winter haze over NorthernChina: the impacts of heterogeneous oxidation by NO2, Front. Environ. Sci.Technol., 10, 1–11, https://doi.org/10.1007/s11783-016-0878-2, 2016a. 
[16] Ackerman, T. P. and Toon, O. B.: Absorption of visible radiation inatmosphere containing mixtures of absorbing and non-absorbing particles,Appl. Optics, 20, 3661–3662, 1981. 
[17] Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., and Xu, X.:Drivers of improved PM2.5 air quality in China from 2013 to 2017, P.Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019. 
[18] Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V., Petäjä,T., Su, H., Cheng, Y. F., Yang, X., Wang, M. H., Chi, X. G., Wang, J. P.,Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F.,Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C. B.: Enhancedhaze pollution by black carbon in megacities in China, Geophys. Res. Lett.,43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016. 
[19] Zhang, Y., Zhang, Q., Cheng, Y., Su, H., Kecorius, S., Wang, Z., Wu, Z., Hu,M., Zhu, T., Wiedensohler, A., and He, K.: Measuring the morphology anddensity of internally mixed black carbon with SP2 and VTDMA: new insightinto the absorption enhancement of black carbon in the atmosphere, Atmos.Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, 2016. 
[20] Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancementof visible light absorption due to mixing state, J. Geophys. Res.,111, D20211, https://doi.org/10.1029/2006JD007315, 2006. 
[21] Zhang, Y., Li, X., Li, M., Zheng, Y., Geng, G., Hong, C., Li, H., Tong, D., Zhang, X., Cheng, Y., Su, H., He, K., and Zhang, Q.: Reduction in black carbon light absorption due to multi-pollutant emission control during APEC China 2014, Atmos. Chem. Phys., 18, 10275–10287, https://doi.org/10.5194/acp-18-10275-2018, 2018. 
[22] Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,S., Kondo, Y., and Quinn, P. K.: Bounding the role of black carbon in theclimate system: A scientific assessment, J. Geophys. Res.-Atmos., 118,5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. 
[23] Matsui, H.: Black carbon simulations using a size-and mixing-state-resolvedthree-dimensional model: 1. Radiative effects and their uncertainties, J.Geophys. Res.-Atmos., 121, 1793–1807, https://doi.org/10.1002/2015JD023998, 2016. 
[24] Ji, D., Gao, M., Maenhaut, W., He, J., Wu, C., Cheng, L., Gao, W., Sun, Y.,Sun, J., Xin, J., Wang, L., and Wang, Y.: The carbonaceous aerosol levelsstill remain a challenge in the Beijing-Tianjin-Hebei region of China:Insights from continuous high temporal resolution measurements in multiplecities, Environ. Int., 126, 171–183, https://doi.org/10.1016/j.envint.2019.02.034,2019b. 
[25] Li, K., Liao, H., Mao, Y., and Ridley, D. A.: Source sector and regioncontributions to concentration and direct radiative forcing of black carbonin China, Atmos. Environ., 124, 351–366,https://doi.org/10.1016/j.atmosenv.2015.06.014, 2016. 
[26] Ji, D., Gao, W., Maenhaut, W., He, J., Wang, Z., Li, J., Du, W., Wang, L., Sun, Y., Xin, J., Hu, B., and Wang, Y.: Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement, Atmos. Chem. Phys., 19, 8569–8590, https://doi.org/10.5194/acp-19-8569-2019, 2019a. 
[27] Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate Effects of BlackCarbon Aerosols in China and India, Science, 297, 2250–2253,https://doi.org/10.1126/science.1075159, 2002. 
[28] Miyakawa, T., Takeda, N., Koizumi, K., Tabaru, M., Ozawa, Y., Hirayama, N.,and Takegawa, N.: A new lase induced incandescence – mass spectrometricanalyzer (LII-MS) for online measurement of aerosol composition classifiedby black carbon mixing state, Aerosol Sci. Tech., 48, 853–863, 2014. 
[29] Ji, D., He, J., Sun, Y., and Gao, M.: Two-year continuous measurements ofcarbonaceous aerosols in urban Beijing, China: Temporal variations,characteristics and source analyses, Chemosphere, 200, 191–200,https://doi.org/10.1016/j.chemosphere.2018.02.067, 2018. 
[30] Obremski, J., Samson, J., Dutkiewicz, V., and Husain, L.: On the use ofsurface equivalent potential temperature in isolating the influence of localas opposed to transported sources on aerosol concentrations, J. Geophys.Res.-Atmos., 94, 11117–11127, https://doi.org/10.1029/JD094iD08p11117, 1989. 
[31] Emmons, L. K., Walters1, S., Hess1, P. G., Lamarque, J.-F., Pfister1, G. G.,Fillmore1, D., Granier, C., Guenther, A., Kinnison, D., Laepple1, T.,Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., andKloster, S.: Description and evaluation of the Model for Ozone and Relatedchemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,https://doi.org/10.5194/gmd-3-43-2010, 2010. 
[32] Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem ”Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010. 
[33] Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:Present-day climate forcing and response from black carbon in snowPresent-day climate forcing and response from black carbon in snow, J.Geophys. Res.-Atmos., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007. 
[34] Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J., andKlimont, Z.: A technology-based global inventory of black and organic carbonemissions from combustion, J. Geophys. Res.-Atmos., 109, D14203,https://doi.org/10.1029/2003JD003697, 2004. 
[35] Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval ofaerosol optical properties from Sun and sky radiance measurements A flexibleinversion algorithm for retrieval of aerosol optical properties from Sun andsky radiance measurements, J. Geophys. Res.-Atmos., 105 20673–20696,https://doi.org/10.1029/2000JD900282, 2000. 
[36] Zhang, Y., Li, M., Cheng, Y., Geng, G., Hong, C., Li, H., Li, X., and Tong,D.: Modeling the aging process of black carbon during atmospheric transportusing a new approach: a case study in Beijing, Atmos. Chem. Phys., 19,9663–9680, https://doi.org/10.5194/acp-19-9663-2019, 2019. 
[37] Toon, O. B. and Ackerman, T. P.: Algorithms for the calculation of scatteringby stratified spheres, Appl. Opt., 20, 3657–3660, 1981. 
[38] Ching, J., Riemer, N., and West, M.: Impacts of black carbon particlesmixing state on cloud microphysical properties: sensitivity to environmentalconditions, J. Geophys. Res.-Atmos., 121, 5990–6013,https://doi.org/10.1002/2016JD024851, 2016. 
[39] Tian, J., Riemer, N., West, M., Pfaffenberger, L., Schlager, H., andPetzold, A.: Modeling the evolution of aerosol particles in a ship plumeusing PartMC-MOSAIC, Atmos. Chem. Phys., 14, 5327–5347,https://doi.org/10.5194/acp-14-5327-2014, 2014. 
[40] Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530, https://doi.org/10.1126/sciadv.1601530, 2016. 
[41] Giglio, L., Randerson, J. T., and Van Der Werf, G. R.: Analysis of daily,monthly, and annual burned area using the fourth-generation global fireemissions database (GFED4), J. Geophys. Res.-Biogeo., 118,317–328, https://doi.org/10.1002/jgrg.20042, 2013. 
[42] Shrivastava, M., Easter, R. C., Northwest, P., Zaveri, R. A., Northwest, P.,Saide, P. E., and Angeles, L.: Modeling organic aerosols in a megacity:comparison of simple and complex representations of the volatility basis setapproach, Atmos. Chem. Phys., 11, 6639–6662,https://doi.org/10.5194/acp-11-6639-2011, 2011. 
[43] Zhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W., Qiu,Y., Lei, L., and Fu, P.: Response of aerosol chemistry to clean air action inBeijing, China: Insights from two-year ACSM measurements and modelsimulations, Environ. Pollut., 255, 113345,https://doi.org/10.1016/j.envpol.2019.113345, 2019. 
[44] Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., andPeng, L.: Trends in China's anthropogenic emissions since 2010 as theconsequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,https://doi.org/10.5194/acp-18-14095-2018, 2018. 
[45] Wang, J., Liu, D., Ge, X., Wu, Y., Shen, F., Chen, M., Zhao, J., Xie, C., Wang, Q., Xu, W., Zhang, J., Hu, J., Allan, J., Joshi, R., Fu, P., Coe, H., and Sun, Y.: Characterization of black carbon-containing fine particles in Beijing during wintertime, Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, 2019. 
[46] Liu, D., Whitehead, J., Alfarra, M. R., Reyes-villegas, E., Spracklen, D. V,Reddington, C. L., Kong, S., Williams, P. I., Ting, Y., Haslett, S., Taylor,J. W., Flynn, M. J., Morgan, W. T., Mcfiggans, G., Coe, H., and Allan, J. D.:Black-carbon absorption enhancement in the atmosphere determined by particlemixing state, Nat. Geosci., 10, 184–188, https://doi.org/10.1038/NGEO2901, 2017. 
[47] Li, M., Zhang, Q., Kurokawa, J., Woo, J., He, K., Lu, Z., and Ohara, T.: MIX:a mosaic Asian anthropogenic emission inventory under the internationalcollaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys.,17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. 
[48] Liang, F., Gao, M., Xiao, Q., Carmichael, G. R., Pan, X., and Liu, Y.:Evaluation of a data fusion approach to estimate daily PM2.5 levels inNorth China, Environ. Res., 158, 54–60, 2017. 
[49] Curci, G., Alyuz, U., Barò, R., Bianconi, R., Bieser, J., Christensen,J. H., Colette, A., Farrow, A., Francis, X., Jiménez-guerrero, P., Im,U., and Liu, P.: Modelling black carbon absorption of solar radiation:combining external and internal mixing assumptions, Atmos. Chem. Phys.,19, 181–204, https://doi.org/10.5194/acp-19-181-2019, 2019. 
[50] Gao, M., Han, Z., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Lee, H.-J., Kim, C.-H., Fu, J. S., Wang, T., Chin, M., Li, M., Woo, J.-H., Zhang, Q., Cheng, Y., Wang, Z., and Carmichael, G. R.: Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) – Part 2: aerosol radiative effects and aerosol feedback, Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, 2020a. 
[51] Curtis, J. H., Riemer, N., and West, M.: A single-column particle-resolvedmodel for simulating the vertical distribution of aerosol mixing state:WRF-PartMC-MOSAIC-SCM v1.0, Geosci. Model Dev., 10, 4057–4079,https://doi.org/10.5194/gmd-10-4057-2017, 2017. 
[52] Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., and Jia,B.: Ozone pollution over China and India: seasonality and sources, Atmos.Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, 2020c. 
[53] Gao, M., Liu, Z., Zheng, B., Ji, D., Sherman, P., Song, S., Xin, J., Liu,C., Wang, Y., Zhang, Q., Xing, J., Jiang, J., Wang, Z., and Carmichael, G.R.: China's emission control strategies have suppressed unfavorableinfluences of climate on wintertime PM2.5 concentrations in Beijing since2002, Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020,2020b. 
[54] Yamineva, Y. and Liu, Z.: Cleaning the air, protecting the climate: Policy, legal and institutional nexus to reduce black carbon emissions in China,Environ. Sci. Policy, 95, 1–10, https://doi.org/10.1016/j.envsci.2019.01.016, 2019. 
[55] Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S. M., Mellon, D., Nuaaman, I., Olfert, J. S., Petaja, T., Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon, Science, 337, 1078–1081, 2012. 
[56] Xu, W., Xie, C., Karnezi, E., Zhang, Q., Wang, J., Pandis, S. N., Ge, X.,Zhang, J., An, J., Wang, Q., Zhao, J., Du, W., Qiu, Y., Zhou, W., He, Y.,Li, Y., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Summertimeaerosol volatility measurements in Beijing, China, Atmos. Chem. Phys., 19,10205–10216, https://doi.org/10.5194/acp-19-10205-2019, 2019. 
[57] Gao, M., Liu, Z., Wang, Y., Lu, X., Ji, D., and Wang, L.: Distinguishing theroles of meteorology, emission control measures, regional transport, andco-benefits of reduced aerosol feedback in “APEC” Blue, Atmos. Environ.,167, 476–486, https://doi.org/10.1016/j.atmosenv.2017.08.054, 2017. 
[58] Ma, X., Huang, J.,Zhao, T., Liu, C., Zhao, K., Xing, J., and Xiao, W.: Rapid increase insummer surface ozone over the North China Plain during 2013–2019: a sideeffect of particulate matter reduction control?, Atmos. Chem. Phys., 21,1–16, https://doi.org/10.5194/acp-21-1-2021, 2021. 
[59] Yang, Y., Wang, H., Smith, S. J., Ma, P.-L., and Rasch, P. J.: Sourceattribution of black carbon and its direct radiative forcing in China,Atmos. Chem. Phys., 17, 4319–4336,https://doi.org/10.5194/acp-17-4319-2017, 2017. 
[60] Qin, W., Zhang, Y., Chen, J., Yu, Q., Cheng, S., Li, W., Liu, X., and Tian,H.: Variation, sources and historical trend of black carbon in Beijing,China based on ground observation and MERRA-2 reanalysis data, Environ.Pollut., 245, 853–863, https://doi.org/10.1016/j.envpol.2018.11.063, 2019. 
[61] Matsui, H., Koike, M., Kondo, Y., Moteki, N., Fast, J. D., and Zaveri, R.A.: Development and validation of a black carbon mixing state resolvedthree-dimensional model: Aging processes and radiative impact, J. Geophys.Res.-Atmos., 118, 2304–2326, https://doi.org/10.1029/2012JD018446, 2013. 
[62] Liu, Z., Hu, B., Zhang, J., Xin, J., Wu, F., Gao, W., Wang, M., and Wang, Y.:Characterization of fine particles during the 2014 Asia-Pacific economiccooperation summit: Number concentration, size distribution andsources, Tellus B, 69, 1303228, https://doi.org/10.1080/16000889.2017.1303228, 2017. 
[63] Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., and Li, J.: Air Qualityand Climate Change, Topic 3 of the Model Inter-Comparison Study for AsiaPhase III (MICS-Asia III), Part I: overview and model evaluation, Atmos.Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, 2018a. 
[64] Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model ofEmissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6,3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. 
[65] Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent andbimodal aerosol size distributions, J. Geophys. Res., 111, D07207,https://doi.org/10.1029/2005JD006328, 2006. 
[66] Gao, M., Ji, D., Liang, F., and Liu, Y.: Attribution of aerosol directradiative forcing in China and India to emitting sectors, Atmos. Environ.,190, 35–42, https://doi.org/10.1016/j.atmosenv.2018.07.011, 2018b. 
[67] Lu, X., Zhang, L., Zhao, Y., Jacob, D. J., Hu, Y., Hu, L., Gao, M., Liu, X.,Petropavlovskikh, I., McClure-Begley, A., and Querel, R.: Surface andtropospheric ozone trends in the Southern Hemisphere since 1990: possiblelinkages to poleward expansion of the Hadley circulation, Sci. Bull., 64,400–409, https://doi.org/10.1016/j.scib.2018.12.021, 2019. 
[68] Ramanathan, V. and Carmichael, G. R.: Global and regional climate changesdue to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156,2008. 
[69] Ren, L., Yang, Y., Wang, H., Zhang, R., Wang, P., and Liao, H.: Sourceattribution of Arctic black carbon and sulfate aerosols and associatedArctic surface warming during 1980–2018, Atmos. Chem. Phys., 20,9067–9085, https://doi.org/10.5194/acp-20-9067-2020, 2020. 
[70] Gao, J., Zhu, B., Xiao, H., Kang, H., Pan, C., Wang, D., and Wang, H.:Effects of black carbon and boundary layer interaction on surface ozone inNanjing, China, Atmos. Chem. Phys., 18, 7081–7094,https://doi.org/10.5194/acp-18-7081-2018, 2018c. 
[71] Chen, D., Liao, H., Yang, Y., Chen, L., and Wang, H.: Simulated agingprocesses of black carbon and its impact during a severe winter haze eventin the Beijing-Tianjin-Hebei region, Sci. Tot. Env., 755, 142712, https://doi.org/10.1016/j.scitotenv.2020.142712, 2021. 
[72] Grell, G. A., Peckham, S. E., Schmitz, R., Mckeen, S. A., Frost, G.,Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within theWRF model, Atmos. Environ., 39, 6957–6975,https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. 
[73] Grieshop, A. P., Reynolds, C. C. O., Kandlikar, M., and Dowlatabadi, H.: Ablack-carbon mitigation wedge, Nat. Publ. Gr., 2, 533–534,https://doi.org/10.1038/ngeo595, 2009. 
[74] Chen, Y., Beig, G., Archer-Nicholls, S., Drysdale, W., Acton, J., Lowe, D.,Nelson, B. S., Lee, J. D., Ran, L., Wang, Y., Wu, Z., Sahu, S. K., Sokhi, R.S., Singh, V., Gadi, R., Hewitt, C. N., Nemitz, E., Archibald, A.,McFiggins, G., and Wild, O.: Avoiding high ozone pollution in Delhi, India,Faraday Discuss., 226, 502–514, https://doi.org/10.1039/D0FD00079E, 2021. 
文献评价指标
浏览 1115次
下载全文 198次
评分次数 576次
用户评分 0.0分
分享 0次