首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-28
Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning
Jiao Tang 1 , 2 , 3 Jiaqi Wang 1 , 2 , 3 , 4 Guangcai Zhong 1 , 2 , 3 Hongxing Jiang 1 , 2 , 3 , 4 Yangzhi Mo 1 , 2 , 3 Bolong Zhang 1 , 2 , 3 , 4 Xiaofei Geng 1 , 2 , 3 , 4 Yingjun Chen 5 Jianhui Tang 6 Congguo Tian 6 Surat Bualert 7 Jun Li 1 , 2 , 3 Gan Zhang 1 , 2 , 3
Show affiliations
DOI:10.5194/acp-21-11337-2021
PDF
摘要

Chromophores represent an important portion of light-absorbing species, i.e., brown carbon. Yet knowledge of what and how chromophores contribute to aerosol light absorption is still sparse. To address this problem, we examined soluble independent chromophores in a set of year-round aerosol samples from Bangkok. The water-soluble fluorescent chromophores identified via excitation–emission matrix (EEM) spectroscopy and follow-up parallel factor analysis could be mainly assigned as humic-like substances and protein-like substances, which differed in their EEM pattern from that of the methanol-soluble fraction. The emission wavelength of fluorescent chromophores in environmental samples tended to increase compared with that of the primary combustion emission, which could be attributed to secondary formation or the aging process. Fluorescent indices inferred that these light-absorbing chromophores were not significantly humified and comprised a mixture of organic matter of terrestrial and microbial origin, which exhibited a different characteristic from primary biomass burning and coal-combustion results. A multiple linear regression analysis revealed that larger fluorescent chromophores that were oxygen-rich and highly aromatic with high molecular weights were the key contributors of light absorption, preferably at longer emission wavelengths (λmax⁡ > 500 nm). Positive matrix factorization analysis further suggested that up to 50 % of these responsible chromophores originated from biomass burning emissions.

授权许可

Copyright: © 2021 Jiao Tang et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Jiao Tang,Jiaqi Wang,Guangcai Zhong,Hongxing Jiang,Yangzhi Mo,Bolong Zhang,Xiaofei Geng,Yingjun Chen,Jianhui Tang,Congguo Tian,Surat Bualert,Jun Li,Gan Zhang. Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Hawkes, J. A., Patriarca, C., Sjöberg, P. J. R., Tranvik, L. J., andBergquist, J.: Extreme isomeric complexity of dissolved organic matter foundacross aquatic environments, Limnol. Oceanogr. Lett., 3, 21–30,https://doi.org/10.1002/lol2.10064, 2018. 
[2] Han, H., Kim, G., Seo, H., Shin, K.-H., and Lee, D.-H.: Significant seasonal changes in optical properties of brown carbon in the midlatitude atmosphere, Atmos. Chem. Phys., 20, 2709–2718, https://doi.org/10.5194/acp-20-2709-2020, 2020. 
[3] Mo, Y. Z., Li, J., Liu, J. W., Zhong, G. C., Cheng, Z. N., Tian, C. G.,Chen, Y. J., and Zhang, G.: The influence of solvent and pH on determinationof the light absorption properties of water-soluble brown carbon, Atmos.Environ., 161, 90–98, https://doi.org/10.1016/j.atmosenv.2017.04.037, 2017. 
[4] Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown carbonspheres in East Asian outflow and their optical properties, Science, 321,833–836, https://doi.org/10.1126/science.1155296, 2008. 
[5] Mounier, S., Patel, N., Quilici, L., Benaim, J. Y., and Benamou, C.:Fluorescence 3D de la matière organique dissoute du fleuve amazone:(Three-dimensional fluorescence of the dissolved organic carbon in theAmazon river), Water Res., 33, 1523–1533,https://doi.org/10.1016/S0043-1354(98)00347-9, 1999. 
[6] Andersson, C. A. and Bro, R.: The N-way Toolbox for MATLAB, Chemom. Intell.Lab. Syst., 52, 1–4, https://doi.org/10.1016/s0169-7439(00)00071-x, 2000. 
[7] Mo, Y., Li, J., Jiang, B., Su, T., Geng, X., Liu, J., Jiang, H., Shen, C.,Ding, P., Zhong, G., Cheng, Z., Liao, Y., Tian, C., Chen, Y., and Zhang, G.:Sources, compositions, and optical properties of humic-like substances inBeijing during the 2014 APEC summit: Results from dual carbon isotope andFourier-transform ion cyclotron resonance mass spectrometry analyses,Environ. Pollut., 239, 322–331,https://doi.org/10.1016/j.envpol.2018.04.041, 2018. 
[8] Mcknight, D. M., Boyer, E. W., Westerhoff, P., Doran, P. T., Kulbe, T., andAndersen, D. T.: Spectrofluorometric characterization of dissolved organicmatter for indication of precursor organic material and aromaticity, Limnol.Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001. 
[9] Babar, Z. B., Park, J.-H., and Lim, H.-J.: Influence of NH 3 on secondaryorganic aerosols from the ozonolysis and photooxidation of α-pinenein a flow reactor, Atmos. Environ., 164, 71–84,https://doi.org/10.1016/j.atmosenv.2017.05.034, 2017. 
[10] Bahram, M., Bro, R., Stedmon, C., and Afkhami, A.: Handling of Rayleigh andRaman scatter for PARAFAC modeling of fluorescence data using interpolation,J. Chemom., 20, 99–105, https://doi.org/10.1002/cem.978, 2006. 
[11] Gu, Q. and Kenny, J. E.: Improvement of Inner Filter Effect CorrectionBased on Determination of Effective Geometric Parameters Using aConventional Fluorimeter, Anal. Chem., 81, 420–426,https://doi.org/10.1021/ac801676j, 2009. 
[12] Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006. 
[13] Hopkins, R. J., Lewis, K., Desyaterik, Y., Wang, Z., Tivanski, A. V.,Arnott, W. P., Laskin, A., and Gilles, M. K.: Correlations between optical,chemical and physical properties of biomass burn aerosols, Geophys. Res.Lett., 34, L18806, https://doi.org/10.1029/2007gl030502, 2007. 
[14] Huang, K., Fu, J. S., Hsu, N. C., Gao, Y., Dong, X., Tsay, S.-C., and Lam,Y. F.: Impact assessment of biomass burning on air quality in Southeast andEast Asia during BASE-ASIA, Atmos. Environ., 78, 291–302,https://doi.org/10.1016/j.atmosenv.2012.03.048, 2013. 
[15] Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006. 
[16] Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescencespectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 5, 6557–6566,https://doi.org/10.1039/c3ay41160e, 2013. 
[17] Zhou, Y., Wen, H., Liu, J., Pu, W., Chen, Q., and Wang, X.: The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China, The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, 2019. 
[18] Murphy, K. R., Timko, S. A., Gonsior, M., Powers, L. C., Wunsch, U. J., andStedmon, C. A.: Photochemistry Illuminates Ubiquitous Organic MatterFluorescence Spectra, Environ. Sci. Technol., 52, 11243–11250,https://doi.org/10.1021/acs.est.8b02648, 2018. 
[19] Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:Differentiating with fluorescence spectroscopy the sources of dissolvedorganic matter in soils subjected to drying, Chemosphere, 38, 45–50,https://doi.org/10.1016/S0045-6535(98)00166-0, 1999. 
[20] Park, S. S. and Yu, J.: Chemical and light absorption properties ofhumic-like substances from biomass burning emissions under controlledcombustion experiments, Atmos. Environ., 136, 114–122,https://doi.org/10.1016/j.atmosenv.2016.04.022, 2016. 
[21] Murphy, K. R., Butler, K. D., Spencer, R. G., Stedmon, C. A., Boehme, J. R.,and Aiken, G. R.: Measurement of dissolved organic matter fluorescence inaquatic environments: an interlaboratory comparison, Environ. Sci. Technol.,44, 9405–9412, https://doi.org/10.1021/es102362t, 2010. 
[22] Yan, G. and Kim, G.: Speciation and Sources of Brown Carbon inPrecipitation at Seoul, Korea: Insights from Excitation-Emission MatrixSpectroscopy and Carbon Isotopic Analysis, Environ. Sci. Technol., 51,11580–11587, https://doi.org/10.1021/acs.est.7b02892, 2017. 
[23] Yue, S., Ren, L., Song, T., Li, L., Xie, Q., Li, W., Kang, M., Zhao, W.,Wei, L., Ren, H., Sun, Y., Wang, Z., Ellam, R. M., Liu, C. Q., Kawamura, K.,and Fu, P.: Abundance and Diurnal Trends of Fluorescent Bioaerosols in theTroposphere over Mt. Tai, China, in Spring, J. Geophys. Res.-Atmos., 124,4158–4173, https://doi.org/10.1029/2018jd029486, 2019. 
[24] Adam, M. G., Chiang, A. W. J., and Balasubramanian, R.: Insights intocharacteristics of light absorbing carbonaceous aerosols over an urbanlocation in Southeast Asia, Environ. Pollut., 257, 113425,https://doi.org/10.1016/j.envpol.2019.113425, 2020. 
[25] Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10, 5965–5977, https://doi.org/10.5194/acp-10-5965-2010, 2010. 
[26] Fu, P., Kawamura, K., Chen, J., Qin, M., Ren, L., Sun, Y., Wang, Z., Barrie,L. A., Tachibana, E., Ding, A., and Yamashita, Y.: Fluorescent water-solubleorganic aerosols in the High Arctic atmosphere, Sci. Rep., 5, 9845,https://doi.org/10.1038/srep09845, 2015. 
[27] Fan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Ji, W., Song, J., and Peng, P.: The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning, Atmos. Chem. Phys., 20, 4593–4605, https://doi.org/10.5194/acp-20-4593-2020, 2020. 
[28] Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan,J.: Fluorescence fingerprinting properties for exploring water-solubleorganic compounds in PM2.5 in an industrial city of northwest China,Atmos. Environ., 184, 203–211,https://doi.org/10.1016/j.atmosenv.2018.04.049, 2018. 
[29] Yan, C., Zheng, M., Desyaterik, Y., Sullivan, A. P., Wu, Y., and CollettJr., J. L.: Molecular Characterization of Water-Soluble Brown CarbonChromophores in Beijing, China, J. Geophys. Res.-Atmos., 125, e2019JD032018,https://doi.org/10.1029/2019jd032018, 2020. 
[30] Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012. 
[31] Yan, C., Zheng, M., Sullivan, A. P., Bosch, C., Desyaterik, Y., Andersson,A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., and Collett, J. L.:Chemical characteristics and light-absorbing property of water-solubleorganic carbon in Beijing: Biomass burning contributions, Atmos. Environ.,121, 4–12, https://doi.org/10.1016/j.atmosenv.2015.05.005, 2015. 
[32] Chen, H., Liao, Z. L., Gu, X. Y., Xie, J. Q., Li, H. Z., and Zhang, J.:Anthropogenic Influences of Paved Runoff and Sanitary Sewage on theDissolved Organic Matter Quality of Wet Weather Overflows: AnExcitation-Emission Matrix Parallel Factor Analysis Assessment, Environ.Sci. Technol., 51, 1157–1167, https://doi.org/10.1021/acs.est.6b03727,2017. 
[33] Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia, Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, 2018. 
[34] Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organicmatter in cave and spring waters using UV–Vis absorbance and fluorescencespectroscopy, Org. Geochem., 41, 270–280,https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010. 
[35] Xie, M., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg,J. H., Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light absorptionof organic carbon and its sources at a southeastern U.S. location in summer,Environ. Pollut., 244, 38–46, https://doi.org/10.1016/j.envpol.2018.09.125,2019. 
[36] Birdwell, J. E. and Valsaraj, K. T.: Characterization of dissolved organicmatter in fogwater by excitation–emission matrix fluorescence spectroscopy,Atmos. Environ., 44, 3246–3253,https://doi.org/10.1016/j.atmosenv.2010.05.055, 2010. 
[37] Bikkina, P., Bikkina, S., Kawamura, K., Sudheer, A. K., Mahesh, G., andKumar, S. K.: Evidence for brown carbon absorption over the Bay of Bengalduring the southwest monsoon season: a possible oceanic source, Environ. Sci.Process Impacts, 22, 1743–1758, https://doi.org/10.1039/d0em00111b, 2020. 
[38] Di Lorenzo, R. A., Washenfelder, R. A., Attwood, A. R., Guo, H., Xu, L., Ng,N. L., Weber, R. J., Baumann, K., Edgerton, E., and Young, C. J.:Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosolat Multiple Field Sites, Environ. Sci. Technol., 51, 3128–3137,https://doi.org/10.1021/acs.est.6b06160, 2017. 
[39] Fan, X., Li, M., Cao, T., Cheng, C., Li, F., Xie, Y., Wei, S., Song, J., andPeng, P. a.: Optical properties and oxidative potential of water- andalkaline-soluble brown carbon in smoke particles emitted from laboratorysimulated biomass burning, Atmos. Environ., 194, 48–57,https://10.1016/j.atmosenv.2018.09.025, 2018. 
[40] Gabor, R. S., Baker, A., McKnight, D. M., and Miller, M. P.: FluorescenceIndices and Their Interpretation, in: Aquatic Organic Matter Fluorescence,edited by: Baker, A., Reynolds, D. M., Lead, J., Coble, P. G., and Spencer,R. G. M., Cambridge Environmental Chemistry Series, Cambridge UniversityPress, Cambridge, UK, 303–338, 2014. 
[41] Gao, Y. and Zhang, Y.: Formation and photochemical investigation of browncarbon by hydroxyacetone reactions with glycine and ammonium sulfate, RSCAdvances, 8, 20719–20725, https://doi.org/10.1039/c8ra02019a, 2018. 
[42] Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P.: MolecularCharacterization of Water-Soluble Humic like Substances in Smoke ParticlesEmitted from Combustion of Biomass Materials and Coal UsingUltrahigh-Resolution Electrospray Ionization Fourier Transform Ion CyclotronResonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575–2585,https://doi.org/10.1021/acs.est.7b06126, 2018. 
[43] Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang,S., Wang, X., Laskin, A., and Cong, Z.: Fluorescence characteristics ofwater-soluble organic carbon in atmospheric aerosol, Environ. Pollut., 268,115906, https://doi.org/10.1016/j.envpol.2020.115906, 2021. 
[44] See, S. W., Balasubramanian, R., and Wang, W.: A study of the physical,chemical, and optical properties of ambient aerosol particles in SoutheastAsia during hazy and nonhazy days, J. Geophys. Res.-Atmos., 111, D10S08,https://doi.org/10.1029/2005JD006180, 2006. 
[45] Shimabuku, K. K., Kennedy, A. M., Mulhern, R. E., and Summers, R. S.:Evaluating Activated Carbon Adsorption of Dissolved Organic Matter andMicropollutants Using Fluorescence Spectroscopy, Environ. Sci. Technol., 51,2676–2684, https://doi.org/10.1021/acs.est.6b04911, 2017. 
[46] Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E. A.,Pradhan, B. B., Dangol, P. M., Panday, A. K., Wan, X., Bai, Z., Kang, S.,Zhang, Q., and Cong, Z.: Water-Soluble Brown Carbon in Atmospheric Aerosolsfrom Godavari (Nepal), a Regional Representative of South Asia, Environ.Sci. Technol., 53, 3471–3479, https://doi.org/10.1021/acs.est.9b00596, 2019. 
[47] Bianco, A., Passananti, M., Deguillaume, L., Mailhot, G., and Brigante, M.:Tryptophan and tryptophan-like substances in cloud water: Occurrence andphotochemical fate, Atmos. Environ., 137, 53–61,https://doi.org/10.1016/j.atmosenv.2016.04.034, 2016. 
[48] Wu, G., Wan, X., Ram, K., Li, P., Liu, B., Yin, Y., Fu, P., Loewen, M., Gao,S., Kang, S., Kawamura, K., Wang, Y., and Cong, Z.: Light absorption,fluorescence properties and sources of brown carbon aerosols in theSoutheast Tibetan Plateau, Environ. Pollut., 257, 113616,https://doi.org/10.1016/j.envpol.2019.113616, 2020. 
[49] Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C.E., Van Nguyen, H., Stone, E. A., Schauer, J. J., and Carmichael, G. R.:Atmospheric brown clouds: Hemispherical and regional variations inlong-range transport, absorption, and radiative forcing, J. Geophys. Res.,112, D22S21, https://doi.org/10.1029/2006JD008124, 2007. 
[50] Wu, G., Wan, X., Gao, S., Fu, P., Yin, Y., Li, G., Zhang, G., Kang, S., Ram,K., and Cong, Z.: Humic-Like Substances (HULIS) in Aerosols of CentralTibetan Plateau (Nam Co, 4730 m asl): Abundance, Light AbsorptionProperties, and Sources, Environ. Sci. Technol., 52, 7203–7211,https://doi.org/10.1021/acs.est.8b01251, 2018. 
[51] Bianco, A., Minella, M., De Laurentiis, E., Maurino, V., Minero, C., andVione, D.: Photochemical generation of photoactive compounds withfulvic-like and humic-like fluorescence in aqueous solution, Chemosphere,111, 529–536, https://doi.org/10.1016/j.chemosphere.2014.04.035, 2014. 
[52] Barnard, J. C., Volkamer, R., and Kassianov, E. I.: Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 8, 6665–6679, https://doi.org/10.5194/acp-8-6665-2008, 2008. 
[53] Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P.,Mizohata, A., and Huboyo, H. S.: Characteristics of carbonaceous aerosolsemitted from peatland fire in Riau, Sumatra, Indonesia, Atmos. Environ., 87,164–169, https://doi.org/10.1016/j.atmosenv.2014.01.037, 2014. 
[54] Kirchstetter, T. W. and Thatcher, T. L.: Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation, Atmos. Chem. Phys., 12, 6067–6072, https://doi.org/10.5194/acp-12-6067-2012, 2012. 
[55] Cory, R. M. and McKnight, D. M.: Fluorescence spectroscopy revealsubiquitous presence of oxidized and reduced quinones in dissolved organicmatter, Environ. Sci. Technol., 39, 8142–8149,https://doi.org/10.1021/es0506962, 2005. 
[56] Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M.,Zhang, Y., and Chen, M.: Seasonal light absorption properties ofwater-soluble brown carbon in atmospheric fine particles in Nanjing, China,Atmos. Environ., 187, 230–240, https://doi.org/10.1016/j.atmosenv.2018.06.002,2018. 
[57] Stedmon, C. A. and Markager, S.: Resolving the variability in dissolvedorganic matter fluorescence in a temperate estuary and its catchment usingPARAFAC analysis, Limnol. Oceanogr., 50, 686–697,https://doi.org/10.4319/lo.2005.50.2.0686, 2005. 
[58] Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: OxidativePotential of Water-Soluble Matter Associated with Chromophoric Substances inPM2.5 over Xi'an, China, Environ. Sci. Technol., 53, 8574–8584,https://doi.org/10.1021/acs.est.9b01976, 2019b. 
[59] Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K.,Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S.,Tiwari, S., Hameed, Z., and Gustafsson, O.: Photochemical degradationaffects the light absorption of water-soluble brown carbon in the SouthAsian outflow, Sci. Adv., 5, 1–10, https://doi.org/10.1126/sciadv.aau8066,2019. 
[60] Tang, J., Li, J., Mo, Y., Safaei Khorram, M., Chen, Y., Tang, J., Zhang, Y.,Song, J., and Zhang, G.: Light absorption and emissions inventory ofhumic-like substances from simulated rainforest biomass burning in SoutheastAsia, Environ. Pollut., 262, 114266,https://doi.org/10.1016/j.envpol.2020.114266, 2020a. 
[61] Wu, F. C., Evans, R. D., and Dillon, P. J.: Separation and Characterizationof NOM by High-Performance Liquid Chromatography and On-LineThree-Dimensional Excitation Emission Matrix Fluorescence Detection,Environ. Sci. Technol., 37, 3687–3693, https://doi.org/10.1021/es020244e,2003. 
[62] Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., and Zhang, Y. L.:Size-Resolved Characterization of the Chromophores in AtmosphericParticulate Matter From a Typical Coal-Burning City in China, J. Geophys.Res.-Atmos., 124, 10546–10563, https://doi.org/10.1029/2019jd031149, 2019a. 
[63] Tang, J.: Data for TJ, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/GQ04LG, 2021, 
[64] Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescenceexcitation - Emission matrix regional integration to quantify spectra fordissolved organic matter, Environ. Sci. Technol., 37, 5701–5710,https://doi.org/10.1021/es034354c, 2003. 
[65] Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing BrownCarbon Chromophores Produced in Reactions of Methylglyoxal with AmmoniumSulfate, Environ. Sci. Technol., 49, 14257–14266,https://doi.org/10.1021/acs.est.5b03608, 2015. 
[66] Lack, D. A., Bahreini, R., Langridge, J. M., Gilman, J. B., and Middlebrook, A. M.: Brown carbon absorption linked to organic mass tracers in biomass burning particles, Atmos. Chem. Phys., 13, 2415–2422, https://doi.org/10.5194/acp-13-2415-2013, 2013. 
[67] Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W., and Peng, P.:Abundances and light absorption properties of brown carbon emitted fromresidential coal combustion in China, Environ. Sci. Technol., 53, 595–603,https://doi.org/10.1021/acs.est.8b05630, 2018. 
[68] Song, J. Z., Li, M. J., Fan, X. J., Zou, C. L., Zhu, M. B., Jiang, B., Yu,Z. Q., Jia, W. L., Liao, Y. H., and Peng, P. A.: Molecular Characterizationof Water- and Methanol-Soluble Organic Compounds Emitted from ResidentialCoal Combustion Using Ultrahigh-Resolution Electrospray Ionization FourierTransform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol.,53, 13607–13617, https://doi.org/10.1021/acs.est.9b04331, 2019. 
[69] Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that thespectral dependence of light absorption by aerosols is affected by organiccarbon, J. Geophys. Res.-Atmos., 109, D21208, https://doi.org/10.1029/2004jd004999,2004. 
[70] Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.:Excitation-emission spectra and fluorescence quantum yields for fresh andaged biogenic secondary organic aerosols, Environ. Sci. Technol., 47,5763–5770, https://doi.org/10.1021/es400644c, 2013. 
[71] Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,and Laskin, A.: Molecular Characterization of Brown Carbon in BiomassBurning Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824,https://doi.org/10.1021/acs.est.6b03024, 2016. 
[72] Wong, J. P. S., Nenes, A., and Weber, R. J.: Changes in Light Absorptivityof Molecular Weight Separated Brown Carbon Due to Photolytic Aging, Environ.Sci. Technol., 51, 8414–8421, https://doi.org/10.1021/acs.est.7b01739, 2017. 
[73] Wang, X., Hayeck, N., Brüggemann, M., Abis, L., Riva, M., Lu, Y., Wang,B., Chen, J., George, C., and Wang, L.: Chemical Characteristics and BrownCarbon Chromophores of Atmospheric Organic Aerosols Over the Yangtze RiverChannel: A Cruise Campaign, J. Geophys. Res.-Atmos., 125, e2020JD032497,https://doi.org/10.1029/2020jd032497, 2020. 
[74] Del Vecchio, R. and Blough, N. V.: On the Origin of the Optical Propertiesof Humic Substances, Environ. Sci. Technol., 38, 3885–3891,https://doi.org/10.1021/es049912h, 2004. 
[75] Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z., and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical properties, Atmos. Chem. Phys., 20, 2017–2030, https://doi.org/10.5194/acp-20-2017-2020, 2020. 
[76] Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmosphericbrown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167,2015. 
[77] Wang, J., Jiang, H., Jiang, H., Mo, Y., Geng, X., Li, J., Mao, S., Bualert,S., Ma, S., Li, J., and Zhang, G.: Source apportionment of water-solubleoxidative potential in ambient total suspended particulate from Bangkok:Biomass burning versus fossil fuel combustion, Atmos. Environ., 235, 117624,https://doi.org/10.1016/j.atmosenv.2020.117624, 2020. 
[78] Laskin, J., Laskin, A., and Nizkorodov, S. A.: Mass Spectrometry Analysis inAtmospheric Chemistry, Anal. Chem., 90, 166–189,https://doi.org/10.1021/acs.analchem.7b04249, 2018. 
[79] Wang, K., Pang, Y., He, C., Li, P., Xiao, S., Sun, Y., Pan, Q., Zhang, Y.,Shi, Q., and He, D.: Optical and molecular signatures of dissolved organicmatter in Xiangxi Bay and mainstream of Three Gorges Reservoir, China:Spatial variations and environmental implications, Sci. Total Environ., 657,1274–1284, https://doi.org/10.1016/j.scitotenv.2018.12.117, 2019. 
[80] Chen, Q., Ikemori, F., and Mochida, M.: Light Absorption andExcitation-Emission Fluorescence of Urban Organic Aerosol Components andTheir Relationship to Chemical Structure, Environ. Sci. Technol., 50,10859–10868, https://doi.org/10.1021/acs.est.6b02541, 2016a. 
[81] Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,Ida, A., Kajii, Y., and Mochida, M.: Characterization of ChromophoricWater-Soluble Organic Matter in Urban, Forest, and Marine Aerosols byHR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy, Environ.Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643,2016b. 
[82] Lee, H.-H., Bar-Or, R. Z., and Wang, C.: Biomass burning aerosols and the low-visibility events in Southeast Asia, Atmos. Chem. Phys., 17, 965–980, https://doi.org/10.5194/acp-17-965-2017, 2017. 
[83] Chen, Q., Ikemori, F., Nakamura, Y., Vodicka, P., Kawamura, K., and Mochida,M.: Structural and Light-Absorption Characteristics of ComplexWater-Insoluble Organic Mixtures in Urban Submicrometer Aerosols, Environ.Sci. Technol., 51, 8293–8303, https://doi.org/10.1021/acs.est.7b01630,2017. 
[84] Lawrence, M. G. and Lelieveld, J.: Atmospheric pollutant outflow from southern Asia: a review, Atmos. Chem. Phys., 10, 11017–11096, https://doi.org/10.5194/acp-10-11017-2010, 2010. 
[85] Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020b. 
[86] Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010. 
[87] Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., andParlanti, E.: Properties of fluorescent dissolved organic matter in theGironde Estuary, Org. Geochem., 40, 706–719,https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009. 
[88] Huo, Y., Li, M., Jiang, M., and Qi, W.: Light absorption properties of HULISin primary particulate matter produced by crop straw combustion underdifferent moisture contents and stacking modes, Atmos. Environ., 191,490–499, https://doi.org/10.1016/j.atmosenv.2018.08.038, 2018. 
[89] Luciani, X., Mounier, S., Redon, R., and Bois, A.: A simple correctionmethod of inner filter effects affecting FEEM and its application to thePARAFAC decomposition, Chemom. Intell. Lab. Syst., 96, 227–238,https://doi.org/10.1016/j.chemolab.2009.02.008, 2009. 
[90] Marrero-Ortiz, W., Hu, M., Du, Z., Ji, Y., Wang, Y., Guo, S., Lin, Y.,Gomez-Hermandez, M., Peng, J., Li, Y., Secrest, J., Levy Zamora, M., Wang,Y., An, T., and Zhang, R.: Formation and optical properties of brown carbonfrom small alpha-dicarbonyls and amines, Environ. Sci. Technol., 53, 117–126,https://doi.org/10.1021/acs.est.8b03995, 2018. 
[91] Ishii, S. K. and Boyer, T. H.: Behavior of reoccurring PARAFAC componentsin fluorescent dissolved organic matter in natural and engineered systems: acritical review, Environ. Sci. Technol., 46, 2006–2017,https://doi.org/10.1021/es2043504, 2012. 
[92] Matos, J. T. V., Freire, S. M. S. C., Duarte, R. M. B. O., and Duarte, A.C.: Natural organic matter in urban aerosols: Comparison between water andalkaline soluble components using excitation–emission matrix fluorescencespectroscopy and multiway data analysis, Atmos. Environ., 102, 1–10,https://doi.org/10.1016/j.atmosenv.2014.11.042, 2015. 
[93] Jiang, H., Li, J., Sun, R., Liu, G., Tian, C., Tang, J., Cheng, Z., Zhu, S.,Zhong, G., Ding, X., and Zhang, G.: Determining the Sources and Transport ofBrown Carbon Using Radionuclide Tracers and Modeling, J. Geophys.Res.-Atmos., 126, e2021JD034616, https://doi.org/10.1029/2021jd034616, 2021. 
[94] Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., andLaskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from aNationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561–11570,https://doi.org/10.1021/acs.est.7b02276, 2017. 
[95] Kasthuriarachchi, N. Y., Rivellini, L.-H., Chen, X., Li, Y. J., and Lee, A.K. Y.: Effect of relative humidity on secondary brown carbon formation inaqueous droplets, Environ. Sci. Technol., 54, 13207–13216,https://doi.org/10.1021/acs.est.0c01239, 2020. 
[96] Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.:Comprehensive Molecular Characterization of Atmospheric Brown Carbon by HighResolution Mass Spectrometry with Electrospray and Atmospheric PressurePhotoionization, Anal. Chem., 90, 12493–12502,https://doi.org/10.1021/acs.analchem.8b02177, 2018. 
[97] Kellerman, A. M., Kothawala, D. N., Dittmar, T., and Tranvik, L. J.:Persistence of dissolved organic matter in lakes related to its molecularcharacteristics, Nat. Geosci., 8, 454–452,https://doi.org/10.1038/ngeo2440, 2015. 
[98] Jiang, H., Li, J., Chen, D., Tang, J., Cheng, Z., Mo, Y., Su, T., Tian, C.,Jiang, B., Liao, Y., and Zhang, G.: Biomass burning organic aerosolssignificantly influence the light absorption properties ofpolarity-dependent organic compounds in the Pearl River Delta Region, China,Environ. Int., 144, 106079, https://doi.org/10.1016/j.envint.2020.106079,2020. 
[99] Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption, Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, 2013. 
[100] Liu, J., Mo, Y., Ding, P., Li, J., Shen, C., and Zhang, G.: Dual carbonisotopes ((14)C and (13)C) and optical properties of WSOC and HULIS-C duringwinter in Guangzhou, China, Sci. Total Environ., 633, 1571–1578,https://doi.org/10.1016/j.scitotenv.2018.03.293, 2018. 
文献评价指标
浏览 258次
下载全文 32次
评分次数 0次
用户评分 0.0分
分享 0次