首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-27
Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality
Benjamin A. Nault 1 , 2 , 3 Duseong S. Jo 1 , 2 Brian C. McDonald 2 , 4 Pedro Campuzano-Jost 1 , 2 Douglas A. Day 1 , 2 Weiwei Hu 1 , 2 , 5 Jason C. Schroder 1 , 2 , 6 James Allan 7 , 8 Donald R. Blake 9 Manjula R. Canagaratna 10 Hugh Coe 8 Matthew M. Coggon 2 , 4 Peter F. DeCarlo 11 Glenn S. Diskin 12 Rachel Dunmore 13 Frank Flocke 14 Alan Fried 15 Jessica B. Gilman 4 Georgios Gkatzelis 2 , 4 , 16 Jacqui F. Hamilton 13 Thomas F. Hanisco 17 Patrick L. Hayes 18 Daven K. Henze 19 Alma Hodzic 14 , 20 James Hopkins 13 , 21 Min Hu 22 L. Greggory Huey 23 B. Thomas Jobson 24 William C. Kuster 4 , 25 , 26 Alastair Lewis 13 , 21 Meng Li 2 , 4 Jin Liao 17 , 27 M. Omar Nawaz 19 Ilana B. Pollack 28 Jeffrey Peischl 2 , 4 Bernhard Rappenglück 29 Claire E. Reeves 30 Dirk Richter 15 James M. Roberts 4 Thomas B. Ryerson 4 , 31 Min Shao 32 Jacob M. Sommers 18 , 33 James Walega 15 Carsten Warneke 2 , 4 Petter Weibring 15 Glenn M. Wolfe 17 , 34 Dominique E. Young 8 , 35 Bin Yuan 32 Qiang Zhang 36 Joost A. de Gouw 1 , 2 Jose L. Jimenez 1 , 2
Show affiliations
DOI:10.5194/acp-21-11201-2021
PDF
摘要

Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the reactivity of specific anthropogenic volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved model representation of ASOA driven by the observations, we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results in up to 900 000 deaths. A limitation of this study is the extrapolation from cities with detailed studies and regions where detailed emission inventories are available to other regions where uncertainties in emissions are larger. In addition to further development of institutional air quality management infrastructure, comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.

授权许可

Copyright: © 2021 Benjamin A. Nault et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Benjamin A. Nault,Duseong S. Jo,Brian C. McDonald,Pedro Campuzano-Jost,Douglas A. Day,Weiwei Hu,Jason C. Schroder,James Allan,Donald R. Blake,Manjula R. Canagaratna,Hugh Coe,Matthew M. Coggon,Peter F. DeCarlo,Glenn S. Diskin,Rachel Dunmore,Frank Flocke,Alan Fried,Jessica B. Gilman,Georgios Gkatzelis,Jacqui F. Hamilton,Thomas F. Hanisco,Patrick L. Hayes,Daven K. Henze,Alma Hodzic,James Hopkins,Min Hu,L. Greggory Huey,B. Thomas Jobson,William C. Kuster,Alastair Lewis,Meng Li,Jin Liao,M. Omar Nawaz,Ilana B. Pollack,Jeffrey Peischl,Bernhard Rappenglück,Claire E. Reeves,Dirk Richter,James M. Roberts,Thomas B. Ryerson,Min Shao,Jacob M. Sommers,James Walega,Carsten Warneke,Petter Weibring,Glenn M. Wolfe,Dominique E. Young,Bin Yuan,Qiang Zhang,Joost A. de Gouw,Jose L. Jimenez. Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] CIESIN: Gridded Population of the World (GPW), v4, SEDAC [data set], availableat: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (last access: 12May 2020), 2017. 
[2] Hu, W., Downward, G., Wong, J. Y. Y., Reiss, B., Rothman, N., Portengen, L.,Li, J., Jones, R. R., Huang, Y., Yang, K., Chen, Y., Xu, J., He, J., Bassig,B., Seow, W. J., Hosgood, H. D., Zhang, L., Wu, G., Wei, F., Vermeulen, R.,and Lan, Q.: Characterization of outdoor air pollution from solid fuelcombustion in Xuanwei and Fuyuan, a rural region of China, Sci. Rep., 10,11335, 2020. 
[3] Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden ofdisease attributable to ambient air pollution: an analysis of data from theGlobal Burden of Diseases Study 2015, Lancet, 389, 1907–1918, 2017. 
[4] Miyakawa, T., Takegawa, N., and Kondo, Y.: Photochemical evolution ofsubmicron aerosol chemical composition in the Tokyo megacity region insummer, J. Geophys. Res.-Atmos., 113, D14304, https://doi.org/10.1029/2007JD009493, 2008. 
[5] van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy,R. C., Lyapustin, A., Sayer, A. M., and Winker, D. M.: Global Estimates ofFine Particulate Matter using a Combined Geophysical-Statistical Method withInformation from Satellites, Models, and Monitors, Environ. Sci. Technol.,50, 3762–3772, 2016. 
[6] Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu,Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemicalcomposition, sources, and aging process of submicron aerosols in Beijing:Contrast between summer and winter, J. Geophys. Res.-Atmos., 121,1955–1977, 2016. 
[7] Coggon, M. M., McDonald, B. C., Vlasenko, A., Veres, P. R., Bernard, F.,Koss, A. R., Yuan, B., Gilman, J. B., Peischl, J., Aikin, K. C., DuRant, J.,Warneke, C., Li, S.-M., and de Gouw, J. A.: Diurnal Variability and EmissionPattern of Decamethylcyclopentasiloxane (D5) from the Application ofPersonal Care Products in Two North American Cities, Environ. Sci. Technol.,52, 5610–5618, 2018. 
[8] MILAGRO Science Team: MILAGRO Data, NASA Langley Research Center [data set], available at: https://doi.org/10.5067/Aircraft/INTEXB/Aerosol-TraceGas (last access: 16 July 2021), 2006. 
[9] Hodzic, A., Campuzano-Jost, P., Bian, H., Chin, M., Colarco, P. R., Day, D. A., Froyd, K. D., Heinold, B., Jo, D. S., Katich, J. M., Kodros, J. K., Nault, B. A., Pierce, J. R., Ray, E., Schacht, J., Schill, G. P., Schroder, J. C., Schwarz, J. P., Sueper, D. T., Tegen, I., Tilmes, S., Tsigaridis, K., Yu, P., and Jimenez, J. L.: Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, 2020. 
[10] ClearfLo Science Team: ClearfLo Data, Natural Environment Research Council Environmental Data Service CEDA Archive [data set], available at: https://catalogue.ceda.ac.uk/uuid/6a5f9eedd68f43348692b3bace3eba45 (last access: 16 July 2021), 2012. 
[11] Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010. 
[12] van Donkelaar, A., Martin, R. V., Brauer, M., and Boys, B. L.: Use ofSatellite Observations for Long-Term Exposure Assessment of GlobalConcentrations of Fine Particulate Matter, Environ. Health Perspect.,123, 135–143, 2015. 
[13] Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L., Ramos-Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H., Cardenas, B., Gutierrez-Avedoy, V., and Molina, M. J.: Air quality in North America's most populous city – overview of the MCMA-2003 campaign, Atmos. Chem. Phys., 7, 2447–2473, https://doi.org/10.5194/acp-7-2447-2007, 2007. 
[14] de Gouw, J. A. and Jimenez, J. L.: Organic Aerosols in the Earth'sAtmosphere, Environ. Sci. Technol., 43, 7614–7618, 2009. 
[15] Morino, Y., Tanabe, K., Sato, K., and Ohara, T.: Secondary organic aerosolmodel intercomparison based on secondary organic aerosol to odd oxygen ratioin Tokyo, J. Geophys. Res.-Atmos., 119, 13489–13505, 2014. 
[16] Hodzic, A., Jimenez, J. L., Prévôt, A. S. H., Szidat, S., Fast, J. D., and Madronich, S.: Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?, Atmos. Chem. Phys., 10, 10997–11016, https://doi.org/10.5194/acp-10-10997-2010, 2010a. 
[17] de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W.C., Roberts, J. M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R.,Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B., and Bates, T.S.: Budget of organic carbon in a polluted atmosphere: Results from the NewEngland Air Quality Study in 2002, J. Geophys. Res.-Atmos., 110,1–22, 2005. 
[18] Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q., and Pye, H. O. T.: Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning, Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, 2017. 
[19] WINTER Science Team: WINTER Data, NCAR [data set], available at: https://data.eol.ucar.edu/master_lists/generated/winter (last access: 16 July 2021), 2015. 
[20] Hodzic, A. and Jimenez, J. L.: Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models, Geosci. Model Dev., 4, 901–917, https://doi.org/10.5194/gmd-4-901-2011, 2011. 
[21] DeCarlo, P. F., Ulbrich, I. M., Crounse, J., de Foy, B., Dunlea, E. J., Aiken, A. C., Knapp, D., Weinheimer, A. J., Campos, T., Wennberg, P. O., and Jimenez, J. L.: Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO, Atmos. Chem. Phys., 10, 5257–5280, https://doi.org/10.5194/acp-10-5257-2010, 2010. 
[22] Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., and Zavala, M.: An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation, Atmos. Chem. Phys., 10, 8697–8760, https://doi.org/10.5194/acp-10-8697-2010, 2010. 
[23] Hodzic, A., Jimenez, J. L., Madronich, S., Aiken, A. C., Bessagnet, B., Curci, G., Fast, J., Lamarque, J.-F., Onasch, T. B., Roux, G., Schauer, J. J., Stone, E. A., and Ulbrich, I. M.: Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols, Atmos. Chem. Phys., 9, 6949–6981, https://doi.org/10.5194/acp-9-6949-2009, 2009. 
[24] Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q.,Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondaryorganic aerosol formation from anthropogenic air pollution: Rapid and higherthan expected, Geophys. Res. Lett., 33, L17811, https://doi.org/10.1029/2006GL026899, 2006. 
[25] DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D., Weinheimer, A. J., Montzka, D. D., Campos, T., and Jimenez, J. L.: Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign, Atmos. Chem. Phys., 8, 4027–4048, https://doi.org/10.5194/acp-8-4027-2008, 2008. 
[26] Wang, L., Slowik, J. G., Tripathi, N., Bhattu, D., Rai, P., Kumar, V., Vats, P., Satish, R., Baltensperger, U., Ganguly, D., Rastogi, N., Sahu, L. K., Tripathi, S. N., and Prévôt, A. S. H.: Source characterization of volatile organic compounds measured by proton-transfer-reaction time-of-flight mass spectrometers in Delhi, India, Atmos. Chem. Phys., 20, 9753–9770, https://doi.org/10.5194/acp-20-9753-2020, 2020. 
[27] Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys., 10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010b. 
[28] Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B.,Atlas, E., Blake, D., Trainer, M., and Parrish, D. D.: Multiyear trends involatile organic compounds in Los Angeles, California: Five decades ofdecreasing emissions, J. Geophys. Res.-Atmos., 117, D00V17, https://doi.org/10.1029/2012JD017899, 2012. 
[29] Shah, V., Jaeglé, L., Jimenez, J. L., Schroder, J. C., Campuzano-Jost,P., Campos, T. L., Reeves, J. M., Stell, M., Brown, S. S., Lee, B. H.,Lopez-Hilfiker, F. D., and Thornton, J. A.: Widespread Pollution fromSecondary Sources of Organic Aerosols during Winter in the NortheasternUnited States, Geophys. Res. Lett., 46, 2974–2983, https://doi.org/10.1029/2018GL081530, 2019. 
[30] Bertram, T. H., Perring, A. E., Wooldridge, P. J., Crounse, J. D., Kwan, A.J., Wennberg, P. O., Scheuer, E., Dibb, J., Avery, M., Sachse, G., Vay, S.A., Crawford, J. H., McNaughton, C. S., Clarke, A., Pickering, K. E.,Fuelberg, H., Huey, G., Blake, D. R., Singh, H. B., Hall, S. R., Shetter, R.E., Fried, A., Heikes, B. G., and Cohen, R. C.: Direct Measurements of theConvective Recycling of the Upper Troposphere, Science, 315, 816–820,2007. 
[31] Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015. 
[32] Jena, C., Ghude, S. D., Kulkarni, R., Debnath, S., Kumar, R., Soni, V. K., Acharja, P., Kulkarni, S. H., Khare, M., Kaginalkar, A. J., Chate, D. M., Ali, K., Nanjundiah, R. S., and Rajeevan, M. N.: Evaluating the sensitivity of fine particulate matter (PM2.5) simulations to chemical mechanism in Delhi, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-673, in review, 2020. 
[33] Jathar, S. H., Woody, M., Pye, H. O. T., Baker, K. R., and Robinson, A. L.: Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions, Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017, 2017. 
[34] Bohnenstengel, S. I., Belcher, S. E., Aiken, A., Allan, J. D., Allen, G.,Bacak, A., Bannan, T. J., Barlow, J. F., Beddows, D. C. S., Bloss, W. J.,Booth, A. M., Chemel, C., Coceal, O., Di Marco, C. F., Dubey, M. K., Faloon,K. H., Fleming, Z. L., Furger, M., Gietl, J. K., Graves, R. R., Green, D.C., Grimmond, C. S. B., Halios, C. H., Hamilton, J. F., Harrison, R. M.,Heal, M. R., Heard, D. E., Helfter, C., Herndon, S. C., Holmes, R. E.,Hopkins, J. R., Jones, A. M., Kelly, F. J., Kotthaus, S., Langford, B., Lee,J. D., Leigh, R. J., Lewis, A. C., Lidster, R. T., Lopez-Hilfiker, F. D.,McQuaid, J. B., Mohr, C., Monks, P. S., Nemitz, E., Ng, N. L., Percival, C.J., Prévôt, A. S. H., Ricketts, H. M. A., Sokhi, R., Stone, D.,Thornton, J. A., Tremper, A. H., Valach, A. C., Visser, S., Whalley, L. K.,Williams, L. R., Xu, L., Young, D. E., Zotter, P., Bohnenstengel, S. I.,Belcher, S. E., Aiken, A., Allan, J. D., Allen, G., Bacak, A., Bannan, T.J., Barlow, J. F., Beddows, D. C. S., Bloss, W. J., Booth, A. M., Chemel,C., Coceal, O., Marco, C. F. D., Dubey, M. K., Faloon, K. H., Fleming, Z.L., Furger, M., Gietl, J. K., Graves, R. R., Green, D. C., Grimmond, C. S.B., Halios, C. H., Hamilton, J. F., Harrison, R. M., Heal, M. R., Heard, D.E., Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A.M., Kelly, F. J., Kotthaus, S., Langford, B., Lee, J. D., Leigh, R. J.,Lewis, A. C., Lidster, R. T., Lopez-Hilfiker, F. D., McQuaid, J. B., Mohr, C., Monks, P. S., Nemitz, E., Ng, N. L., Percival, C. J., Prévôt, A. S. H., Ricketts, H. M. A., Sokhi, R., Stone, D., Thornton, J. A., Tremper, A. H., Valach, A. C., Visser, S., Whalley, L. K., Williams, L. R., Xu, L., Young, D. E., and Zotter, P.: Meteorology,Air Quality, and Health in London: The ClearfLo Project, Bull. Am. Meteorol.Soc., 96, 779–804, 2015. 
[35] Burnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S.,Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K.R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün,A., Turner, M. C., Gapstur, S. M., Diver, W. R., and Cohen, A.: An integratedrisk function for estimating the global burden of disease attributable toambient fine particulate matter exposure, Environ. Health Perspect., 122,397–403, 2014. 
[36] Jimenez, J. L.: Jimenez Group Peer-Reviewed Journal Publications, University of Colorado, Boulder, available at: http://cires1.colorado.edu/jimenez/group_pubs.html, last access: 16 July 2021. 
[37] Liao, J., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Fried, A., Marais, E. A., Gonzalez Abad, G., Chance, K., Jethva, H. T., Ryerson, T. B., Warneke, C., and Wisthaler, A.: Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, 2019. 
[38] Worton, D. R., Isaacman, G., Gentner, D. R., Dallmann, T. R., Chan, A. W.H., Ruehl, C., Kirchstetter, T. W., Wilson, K. R., Harley, R. A., andGoldstein, A. H.: Lubricating Oil Dominates Primary Organic AerosolEmissions from Motor Vehicles, Environ. Sci. Technol., 48, 3698–3706,2014. 
[39] Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A.,Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N.A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B.,Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Globalestimates of mortality associated with long-term exposure to outdoor fineparticulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597,2018. 
[40] Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: Thecontribution of outdoor air pollution sources to premature mortality on aglobal scale, Nature, 525, 367–371, 2015. 
[41] Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B.H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Sullivan,A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T.L., Stell, M., Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemicalfeedbacks weaken the wintertime response of particulate sulfate and nitrateto emissions reductions over the eastern United States, P. Natl. Acad.Sci. USA, 115, 8110–8115, 2018. 
[42] Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang, Y., Bo, Y., Su, H., Cheng, Y., and He, K.: Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential, Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, 2019. 
[43] Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, 2016. 
[44] Wood, E. C., Canagaratna, M. R., Herndon, S. C., Onasch, T. B., Kolb, C. E., Worsnop, D. R., Kroll, J. H., Knighton, W. B., Seila, R., Zavala, M., Molina, L. T., DeCarlo, P. F., Jimenez, J. L., Weinheimer, A. J., Knapp, D. J., Jobson, B. T., Stutz, J., Kuster, W. C., and Williams, E. J.: Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston, Atmos. Chem. Phys., 10, 8947–8968, https://doi.org/10.5194/acp-10-8947-2010, 2010. 
[45] Shaddick, G., Thomas, M. L., Amini, H., Broday, D., Cohen, A., Frostad, J.,Green, A., Gumy, S., Liu, Y., Martin, R. V., Pruss-Ustun, A., Simpson, D.,van Donkelaar, A., and Brauer, M.: Data Integration for the Assessment ofPopulation Exposure to Ambient Air Pollution for Global Burden of DiseaseAssessment, Environ. Sci. Technol., 52, 9069–9078, 2018. 
[46] Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: FromAir Pollution to Climate Change, 2nd Edn., John Wiley & Sons, Inc.,Hoboken, NJ USA, 2006. 
[47] Seltzer, K. M., Pennington, E., Rao, V., Murphy, B. N., Strum, M., Isaacs, K. K., and Pye, H. O. T.: Reactive organic carbon emissions from volatile chemical products, Atmos. Chem. Phys., 21, 5079–5100, https://doi.org/10.5194/acp-21-5079-2021, 2021. 
[48] CalNex Science Team: CalNex Data, NOAA Earth System Research Laboratory [data set], available at: https://esrl.noaa.gov/csl/groups/cls7/measurements/2010calnex/Ground/DataDownload (last access: 16 July 2021), 2010. 
[49] Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmos. Chem. Phys., 13, 10095–10112, https://doi.org/10.5194/acp-13-10095-2013, 2013. 
[50] IHME: Global Burden of Disease Study 2015 (GBD 2015) Data Resources, GHDx [data set],available at: http://ghdx.healthdata.org/record/ihme-data/gbd-2015-life-expectancy-all-cause-and-cause-specific-mortality-1980-2015 (last access: 18 July 2021), 2016. 
[51] Cappa, C. D., Jathar, S. H., Kleeman, M. J., Docherty, K. S., Jimenez, J. L., Seinfeld, J. H., and Wexler, A. S.: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses, Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, 2016. 
[52] Liu, X., Deming, B., Pagonis, D., Day, D. A., Palm, B. B., Talukdar, R., Roberts, J. M., Veres, P. R., Krechmer, J. E., Thornton, J. A., de Gouw, J. A., Ziemann, P. J., and Jimenez, J. L.: Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules, Atmos. Meas. Tech., 12, 3137–3149, https://doi.org/10.5194/amt-12-3137-2019, 2019. 
[53] Chafe, Z., Brauer, M., Heroux, M.-E., Klimont, Z., Lanki, T., Salonen, R. O.,and Smith, K. R.: Residential heating with wood and coal: Health impacts andpolicy options in Europe and North America, WHO/UNECE LRTAP, 1–49, 2015. 
[54] Lu, Q., Zhao, Y., and Robinson, A. L.: Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions, Atmos. Chem. Phys., 18, 17637–17654, https://doi.org/10.5194/acp-18-17637-2018, 2018. 
[55] Janssen, R. H. H., Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Lelieveld,J., Crippa, M., Prévôt, A. S. H., Ait-Helal, W., Borbon, A.,Sauvage, S., and Locoge, N.: Influence of local production and verticaltransport on the organic aerosol budget over Paris, J. Geophys. Res.-Atmos., 122, 8276–8296, 2017. 
[56] Ma, P. K., Zhao, Y., Robinson, A. L., Worton, D. R., Goldstein, A. H., Ortega, A. M., Jimenez, J. L., Zotter, P., Prévôt, A. S. H., Szidat, S., and Hayes, P. L.: Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA, Atmos. Chem. Phys., 17, 9237–9259, https://doi.org/10.5194/acp-17-9237-2017, 2017. 
[57] SEAC4RS Science Team: SEAC4RS Data, NASA Langley Research Center [data set], available at: https://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud (last access: 16 July 2021), 2013. 
[58] McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and Trainer,M.: Volatile chemical products emerging as largest petrochemical source ofurban organic emissions, Science, 359, 760–764, 2018. 
[59] Zhang, Q. J., Beekmann, M., Freney, E., Sellegri, K., Pichon, J. M., Schwarzenboeck, A., Colomb, A., Bourrianne, T., Michoud, V., and Borbon, A.: Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions, Atmos. Chem. Phys., 15, 13973–13992, https://doi.org/10.5194/acp-15-13973-2015, 2015. 
[60] Ye, P., Ding, X., Hakala, J., Hofbauer, V., Robinson, E. S., and Donahue, N.M.: Vapor wall loss of semi-volatile organic compounds in a Teflon chamber,Aerosol Sci. Technol., 50, 822–834, 2016. 
[61] Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity anddominance of oxygenated species in organic aerosols inanthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007. 
[62] Kodros, J. K., Carter, E., Brauer, M., Volckens, J., Bilsback, K. R.,L'Orange, C., Johnson, M., and Pierce, J. R.: Quantifying the Contribution toUncertainty in Mortality Attributed to Household, Ambient, and JointExposure to PM2.5 From Residential Solid Fuel Use, Geohealth, 2, 25–39,2018. 
[63] Kleinman, L. I., Daum, P. H., Lee, Y.-N., Senum, G. I., Springston, S. R.,Wang, J., Berkowitz, C., Hubbe, J., Zaveri, R. A., Brechtel, F. J., Jayne,J., Onasch, T. B., and Worsnop, D.: Aircraft observations of aerosolcomposition and ageing in New England and Mid-Atlantic States during thesummer 2002 New England Air Quality Study field campaign, J. Geophys. Res.-Atmos., 112, D09310, https://doi.org/10.1029/2006JD007786, 2007. 
[64] EMEP/EEA: EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016, EEA,Luxembourg, available at: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (last access:16 July 2021), 2016. 
[65] Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D., Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City, Atmos. Chem. Phys., 9, 5681–5709, https://doi.org/10.5194/acp-9-5681-2009, 2009. 
[66] Sacks, J., Buckley, B., Alexis, N., Angrish, M., Beardslee, R., Benson, A.,Brown, J., Buckley, B., Campen, M., Chan, E., Coffman, E., Davis, A.,Dutton, S. J., Eftim, S., Gandy, J., Hemming, B. L., Hines, E., Holliday,K., Kerminen, V.-M., Kiomourtzoglou, M.-A., Kirrane, E., Kotchmar, D.,Koturbash, I., Kulmala, M., Lassiter, M., Limaye, V., Ljungman, P., Long,T., Luben, T., Malm, W., McDonald, J. F., McDow, S., Mickley, L., Mikati,I., Mulholland, J., Nichols, J., Patel, M. M., Pinder, R., Pinto, J. P.,Rappazzo, K., Richomond-Bryant, J., Rosa, M., Russell, A., Schichtel, B.,Stewart, M., Stanek, L. W., Turner, M., Van Winkle, L., Wagner, J., Weaver,Christopher, Wellenius, G., Whitsel, E., Yeckel, C., Zanobetti, A., andZhang, M.: Integrated Science Assessment (ISA) for Particulate Matter (FinalReport, December 2019), Environmental Protection Agency, available at:https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534 (last access: 20October 2020), 2019. 
[67] Dominutti, P., Keita, S., Bahino, J., Colomb, A., Liousse, C., Yoboué, V., Galy-Lacaux, C., Morris, E., Bouvier, L., Sauvage, S., and Borbon, A.: Anthropogenic VOCs in Abidjan, southern West Africa: from source quantification to atmospheric impacts, Atmos. Chem. Phys., 19, 11721–11741, https://doi.org/10.5194/acp-19-11721-2019, 2019. 
[68] Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K.,Sommers, J. M., Sullivan, A. P., Campos, T., Reeves, J. M., Hills, A.,Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L.,McDuffie, E. E., Hayes, P. L., Weber, R. J., Dibb, J. E., Apel, E. C.,Jaeglé, L., Brown, S. S., Thronton, J. A., and Jimenez, J. L.: Sourcesand Secondary Production of Organic Aerosols in the Northeastern US duringWINTER, J. Geophys. Res.-Atmos., 123, 7771–7796, https://doi.org/10.1029/2018JD028475, 2018. 
[69] Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A.,Cairns, B., Cohen, R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C.,Ferrare, R. A., Fischer, M. L., Flagan, R. C., Goldstein, A. H., Hair, J.W., Hardesty, R. M., Hostetler, C. A., Jimenez, J. L., Langford, A. O.,McCauley, E., McKeen, S. A., Molina, L. T., Nenes, A., Oltmans, S. J.,Parrish, D. D., Pederson, J. R., Pierce, R. B., Prather, K., Quinn, P. K.,Seinfeld, J. H., Senff, C. J., Sorooshian, A., Stutz, J., Surratt, J. D.,Trainer, M., Volkamer, R., Williams, E. J., and Wofsy, S. C.: The 2010California Research at the Nexus of Air Quality and Climate Change (CalNex)field study, J. Geophys. Res.-Atmos., 118, 5830–5866, 2013. 
[70] Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,Science, 315, 1259–1262, 2007. 
[71] Anenberg, S., Miller, J., Henze, D., and Minjares, R.: A global snapshot ofthe air pollution-related health impacts of transportation sector emissionsin 2010 and 2015, ICCT, Clim. Clean Air Coal., 1–55, 2019. 
[72] Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato,S., Florou, K., Skyllakou, K., Kaltsonoudis, C., Nenes, A., and Pandis, S.N.: Rapid dark aging of biomass burning as an overlooked source of oxidizedorganic aerosol, P. Natl. Acad. Sci. USA, 117, 33028–33033,2020. 
[73] Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., andRobinson, A. L.: Intermediate Volatility Organic Compound Emissions fromOn-Road Gasoline Vehicles and Small Off-Road Gasoline Engines, Environ. Sci.Technol., 50, 4554–4563, 2016. 
[74] Deming, B. L., Pagonis, D., Liu, X., Day, D. A., Talukdar, R., Krechmer, J. E., de Gouw, J. A., Jimenez, J. L., and Ziemann, P. J.: Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions, Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, 2019. 
[75] Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in theatmosphere, Science, 326, 1525–1529, 2009. 
[76] Zhao, Y., Saleh, R., Saliba, G., Presto, A. A., Gordon, T. D., Drozd, G. T.,Goldstein, A. H., Donahue, N. M., and Robinson, A. L.: Reducing secondaryorganic aerosol formation from gasoline vehicle exhaust, P. Natl. Acad.Sci. USA, 114, 6984–6989, 2017. 
[77] Zhao, Y., Hennigan, C. J., May, A. A., Daniel, S., Gouw, J. A. D., Gilman,J. B., Kuster, W. C., and Robinson, A. L.: Intermediate-Volatility OrganicCompounds: A Large Source of Secondary Organic Aerosol, Environ. Sci.Technol, 48, 13743–13750, 2014.  
[78] Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile OrganicCompounds, Chem. Rev., 103, 4605–4638, 2003. 
[79] Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 
[80] de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter, S.,Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B.L., Lerner, B. M., McDonald, B. C., Rappenglück, B., Roberts, J. M.,Stevens, P. S., Stutz, J., Thalman, R., Veres, P. R., Volkamer, R., Warneke,C., Washenfelder, R. A., and Young, C. J.: Chemistry of volatile organiccompounds in the Los Angeles basin: Formation of oxygenated compounds anddetermination of emission ratios, J. Geophys. Res., 123, 2298–2319,2018. 
[81] Punger, E. M. and West, J. J.: The effect of grid resolution on estimates ofthe burden of ozone and fine particulate matter on premature mortality inthe USA, Air Qual. Atmos. Health, 6, 563–573, 2013. 
[82] de Gouw, J. A., Gilman, J. B., Kim, S.-W., Lerner, B. M., Isaacman-VanWertz,G., McDonald, B. C., Warneke, C., Kuster, W. C., Lefer, B. L., Griffith, S.M., Dusanter, S., Stevens, P. S., and Stutz, J.: Chemistry of VolatileOrganic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes andDetermination of Emission Ratios, J. Geophys. Res.-Atmos., 122,11843–11861, 2017. 
[83] Ridley, D. A., Heald, C. L., Ridley, K. J., and Kroll, J. H.: Causes andconsequences of decreasing atmospheric organic aerosol in the United States,P. Natl. Acad. Sci. USA, 115, 290–295, 2018. 
[84] Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M.,and Parrish, D. D.: Trends in ozone, its precursors, and related secondaryoxidation products in Los Angeles, California: A synthesis of measurementsfrom 1960 to 2010, J. Geophys. Res.-Atmos., 118, 5893–5911, 2013. 
[85] Khare, P., Machesky, J., Soto, R., He, M., Presto, A. A., and Gentner, D. R.:Asphalt-related emissions are a major missing nontraditional source ofsecondary organic aerosol precursors, Sci. Adv., 6, eabb9785,https://doi.org/10.1126/sciadv.abb9785, 2020. 
[86] Baker, K. R., Woody, M. C., Valin, L., Szykman, J., Yates, E. L., Iraci, L.T., Choi, H. D., Soja, A. J., Koplitz, S. N., Zhou, L., Campuzano-Jost, P.,Jimenez, J. L., and Hair, J. W.: Photochemical model evaluation of 2013California wild fire air quality impacts using surface, aircraft, andsatellite data, Sci. Total Environ., 637/638, 1137–1149, 2018. 
[87] Zhao, B., Wang, S., Donahue, N. M., Jathar, S. H., Huang, X., Wu, W., Hao,J., and Robinson, A. L.: Quantifying the effect of organic aerosol aging andintermediate-volatility emissions on regional-scale aerosol pollution inChina, Sci. Rep., 6, 28815, https://doi.org/10.1038/srep28815, 2016. 
[88] Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18, 5391–5413, https://doi.org/10.5194/acp-18-5391-2018, 2018. 
[89] Bae, M.-S., Demerjian, K. L., and Schwab, J. J.: Seasonal estimation oforganic mass to organic carbon in PM2.5 at rural and urban locations in NewYork state, Atmos. Environ., 40, 7467–7479, 2006. 
[90] Lacey, F. G., Henze, D. K., Lee, C. J., van Donkelaar, A., and Martin, R. V.:Transient climate and ambient health impacts due to national solid fuelcookstove emissions, P. Natl. Acad. Sci. USA, 114, 1269–1274,2017. 
[91] Lam, N. L., Upadhyay, B., Maharjan, S., Jagoe, K., Weyant, C. L., Thompson,R., Uprety, S., Johnson, M. A., and Bond, T. C.: Seasonal fuel consumption,stoves, and end-uses in rural households of the far-western developmentregion of Nepal, Environ. Res. Lett., 12, 125011, https://doi.org/10.1088/1748-9326/aa98cc, 2017. 
[92] Hayes, P. L., Ortega, A. M., Cubison, M. J., Froyd, K. D., Zhao, Y., Cliff,S. S., Hu, W. W., Toohey, D. W., Flynn, J. H., Lefer, B. L., Grossberg, N.,Alvarez, S., Rappenglück, B., Taylor, J. W., Allan, J. D., Holloway, J.S., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Massoli, P., Zhang, X.,Liu, J., Weber, R. J., Corrigan, A. L., Russell, L. M., Isaacman, G.,Worton, D. R., Kreisberg, N. M., Goldstein, A. H., Thalman, R., Waxman, E.M., Volkamer, R., Lin, Y. H., Surratt, J. D., Kleindienst, T. E., Offenberg,J. H., Dusanter, S., Griffith, S., Stevens, P. S., Brioude, J., Angevine, W.M., and Jimenez, J. L.: Organic aerosol composition and sources in Pasadena,California, during the 2010 CalNex campaign, J. Geophys. Res.-Atmos.,118, 9233–9257, 2013. 
[93] Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. 
[94] Platt, S. M., Haddad, I. E., Pieber, S. M., Huang, R.-J., Zardini, A. A.,Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R.,Slowik, J. G., Fuller, S. J., Kalberer, M., Chirico, R., Dommen, J.,Astorga, C., Zimmermann, R., Marchand, N., Hellebust, S., Temime-Roussel,B., Baltensperger, U., and Prévôt, A. S. H.: Two-stroke scooters area dominant source of air pollution in many cities, Nat. Commun., 5, 3749, https://doi.org/10.1038/ncomms4749,2014. 
[95] Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263–1277, https://doi.org/10.5194/acp-9-1263-2009, 2009. 
[96] Petit, J.-E., Favez, O., Sciare, J., Canonaco, F., Croteau, P., Močnik, G., Jayne, J., Worsnop, D., and Leoz-Garziandia, E.: Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer, Atmos. Chem. Phys., 14, 13773–13787, https://doi.org/10.5194/acp-14-13773-2014, 2014. 
[97] Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P.D., de Gouw, J. A., Koike, M., and Shirai, T.: Comparison of air pollutantemissions among mega-cities, Atmos. Environ., 43, 6435–6441, 2009. 
[98] Silva, R. A., Adelman, Z., Fry, M. M., and West, J. J.: The Impact ofIndividual Anthropogenic Emissions Sectors on the Global Burden of HumanMortality due to Ambient Air Pollution, Environ. Health Perspect., 124,1776–1784, 2016. 
[99] Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J.,Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R.,Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understandingsecondary organic aerosol: Implications for global climate forcing, Rev.Geophys., 55, 509–559, 2017. 
[100] Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu,N., Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I.,Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L.,Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D.,Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F.,Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C.,Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart,R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., andZhong, M.: The Lancet Commission on pollution and health, Lancet,391, 462–512, 2018. 
[101] Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., Zarmpas, P., Liakakou, E., Gerasopoulos, E., and Mihalopoulos, N.: Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study, Atmos. Chem. Phys., 19, 901–919, https://doi.org/10.5194/acp-19-901-2019, 2019. 
[102] Singh, A., Satish, R. V., and Rastogi, N.: Characteristics and sources offine organic aerosol over a big semi-arid urban city of western India usingHR-ToF-AMS, Atmos. Environ., 208, 103–112, 2019. 
[103] Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T.R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber,R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondaryorganic aerosol from diesel and gasoline vehicles through detailedcharacterization of organic carbon emissions, P. Natl. Acad. Sci. USA, 109, 18318–18323, 2012. 
[104] Kondo, Y., Morino, Y., Fukuda, M., Kanaya, Y., Miyazaki, Y., Takegawa, N.,Tanimoto, H., McKenzie, R., Johnston, P., Blake, D. R., Murayama, T., andKoike, M.: Formation and transport of oxidized reactive nitrogen, ozone, andsecondary organic aerosol in Tokyo, J. Geophys. Res.-Atmos., 113,D21310, https://doi.org/10.1029/2008JD010134, 2008. 
[105] Goel, R. and Guttikunda, S. K.: Evolution of on-road vehicle exhaustemissions in Delhi, Atmos. Environ., 105, 78–90, 2015. 
[106] Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K.: An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, 2020. 
[107] Herndon, S. C., Onasch, T. B., Wood, E. C., Kroll, J. H., Canagaratna, M.R., Jayne, J. T., Zavala, M. A., Knighton, W. B., Mazzoleni, C., Dubey, M.K., Ulbrich, I. M., Jimenez, J. L., Seila, R., de Gouw, J. A., de Foy, B.,Fast, J., Molina, L. T., Kolb, C. E., and Worsnop, D. R.: Correlation ofsecondary organic aerosol with odd oxygen in Mexico City, Geophys. Res.Lett., 35, L15804, https://doi.org/10.1029/2008GL034058, 2008. 
[108] KORUS-AQ Science Team: KORUS-AQ Data, NASA Langley Research Center [data set], available at: https://doi.org/10.5067/Aircraft/KORUSAQ/DATA01 (last access: 16 July 2021), 2015. 
[109] Heringa, M. F., DeCarlo, P. F., Chirico, R., Tritscher, T., Dommen, J., Weingartner, E., Richter, R., Wehrle, G., Prévôt, A. S. H., and Baltensperger, U.: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer, Atmos. Chem. Phys., 11, 5945–5957, https://doi.org/10.5194/acp-11-5945-2011, 2011 
[110] Pagonis, D., Krechmer, J. E., de Gouw, J., Jimenez, J. L., and Ziemann, P. J.: Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds, Atmos. Meas. Tech., 10, 4687–4696, https://doi.org/10.5194/amt-10-4687-2017, 2017. 
[111] Ensberg, J. J., Hayes, P. L., Jimenez, J. L., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Holloway, J. S., Gordon, T. D., Jathar, S., Robinson, A. L., and Seinfeld, J. H.: Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation, Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, 2014. 
[112] Freney, E. J., Sellegri, K., Canonaco, F., Colomb, A., Borbon, A., Michoud, V., Doussin, J.-F., Crumeyrolle, S., Amarouche, N., Pichon, J.-M., Bourianne, T., Gomes, L., Prevot, A. S. H., Beekmann, M., and Schwarzenböeck, A.: Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment, Atmos. Chem. Phys., 14, 1397–1412, https://doi.org/10.5194/acp-14-1397-2014, 2014. 
[113] NEAQS 2002 Science Team: NEAQS 2002 Data, NOAA Earth System Research Laboratory [data set], available at: https://esrl.noaa.gov/csl/groups/cls7/measurements/2002NEAQS (last access: 16 July 2021), 2002. 
[114] Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, 2015. 
[115] Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Farren, N. J., Hopkins, J. R., Ward, M. W., Swift, S. J., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.: Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India, Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, 2021. 
[116] Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J., Blake, D. R., Brune, W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin, G. S., Fried, A., Huey, L. G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S. E., Scheuer, E., Thornhill, K. L., Woo, J.-H., and Jimenez, J. L.: Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, 2018. 
[117] Krechmer, J. E., Pagonis, D., Ziemann, P. J., and Jimenez, J. L.:Quantification of Gas-Wall Partitioning in Teflon Environmental ChambersUsing Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ,Environ. Sci. Technol., 50, 5757–5765, 2016. 
[118] Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y.,Turner, M. C., Arden, C., Thurston, G., Calle, E. E., Thun, M. J.,Beckerman, B., Deluca, P., Finkelstein, N., Ito, K., Moore, D. K., Newbold,K. B., Ramsay, T., Ross, Z., Shin, H., and Tempalski, B.: Extended Follow-Upand Spatial Analysis of the American Cancer Society Study LinkingParticulate Air Pollution and Mortality Number 140 May 2009 PRESS VERSION,2009. 
[119] TexAQS 2000 Science Team: TexAQS 2000 Data, NOAA Earth System Research Laboratory [data set], available at: https://esrl.noaa.gov/csl/groups/cls7/measurements/2000TexAQS/LaPorte/DataDownload, 2000. 
[120] Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J.,Luo, Z. J., Mace, G. G., Pan, L. L., Pfister, L., Rosenlof, K. H., Redemann,J., Reid, J. S., Singh, H. B., Thompson, A. M., Yokelson, R., Minnis, P.,Chen, G., Jucks, K. W., and Pszenny, A.: Planning, implementation, andscientific goals of the Studies of Emissions and Atmospheric Composition,Clouds and Climate Coupling by Regional Surveys (SEAC4RS) fieldmission, J. Geophys. Res.-Atmos., 121, 4967–5009, 2016. 
文献评价指标
浏览 703次
下载全文 45次
评分次数 0次
用户评分 0.0分
分享 0次