首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-22
Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition
Yang Wang 1 , 2 Guangjie Zheng 1 Michael P. Jensen 3 Daniel A. Knopf 4 Alexander Laskin 5 Alyssa A. Matthews 6 David Mechem 7 Fan Mei 6 Ryan Moffet 8 Arthur J. Sedlacek 3 John E. Shilling 6 Stephen Springston 3 Amy Sullivan 9 Jason Tomlinson 6 Daniel Veghte 6 Rodney Weber 10 Robert Wood 11 Maria A. Zawadowicz 3 , 6 Jian Wang 1
Show affiliations

Because of their extensive coverage, marine low clouds greatly impact the global climate. Presently, the response of marine low clouds to the changes in atmospheric aerosols remains a major source of uncertainty in climate simulations. One key contribution to this large uncertainty derives from the poor understanding of the properties and processes of marine aerosols under natural conditions and the perturbation by anthropogenic emissions. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer (MBL) clouds, where cloud albedo and precipitation are highly susceptible to perturbations in aerosol properties. Here we examine the key processes that drive the cloud condensation nuclei (CCN) population in the MBL using comprehensive characterizations of aerosol and trace gas vertical profiles during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. During ACE-ENA, a total of 39 research flights were conducted in the Azores: 20 during summer 2017 and 19 during winter 2018. During summer, long-range-transported aerosol layers were periodically observed in the lower free troposphere (FT), leading to elevated FT CCN concentrations (NCCN). Both biomass burning and pollution from North America contribute to submicron aerosol mass in these layers, with pollution likely the dominant contributor. In contrast, long-range transported continental emissions have a much weaker influence on the aerosol properties in the ENA during the winter season. While the entrainment of FT air is a major source of particle number in the MBL for both seasons, on average it does not serve as a direct source of CCN in the MBL because the average FT NCCN is the same or even lower than that in the MBL. The particle number flux due to FT entrainment is dominated by pre-CCN (particles that are too small to form cloud droplets under typical conditions, i.e., particles with sizes below the Hoppel minimum) due to the elevated Npre-CCN in the lower FT. Once these pre-CCN are entrained into the MBL, they can grow and reach CCN size range through condensational growth, representing an indirect and major source of MBL CCN in the ENA. The impact of synoptic conditions on the aerosol properties is examined. Under pre-front and post-front conditions, shallow convective activity often leads to a deep and decoupled boundary layer. Coalescence scavenging and evaporation of drizzle below clouds lead to reduced NCCN and larger accumulation-mode particle sizes in the upper cloud-containing decoupled layer, indicating that surface measurements overestimate the NCCN relevant to the formation of MBL clouds under decoupled conditions.


Copyright: © 2021 Yang Wang et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/


Yang Wang,Guangjie Zheng,Michael P. Jensen,Daniel A. Knopf,Alexander Laskin,Alyssa A. Matthews,David Mechem,Fan Mei,Ryan Moffet,Arthur J. Sedlacek,John E. Shilling,Stephen Springston,Amy Sullivan,Jason Tomlinson,Daniel Veghte,Rodney Weber,Robert Wood,Maria A. Zawadowicz,Jian Wang. Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)



[1] Bretherton, C. S., Wood, R., George, R. C., Leon, D., Allen, G., and Zheng, X.: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx, Atmos. Chem. Phys., 10, 10639–10654, https://doi.org/10.5194/acp-10-10639-2010, 2010. 
[2] Bony, S. and Dufresne, J. L.: Marine boundary layer clouds at the heart oftropical cloud feedback uncertainties in climate models, Geophys.Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
[3] Sullivan, A., Guo, H., Schroder, J., Campuzano-Jost, P., Jimenez, J.,Campos, T., Shah, V., Jaeglé, L., Lee, B., and Lopez-Hilfiker, F.:Biomass burning markers and residential burning in the WINTER aircraftcampaign, J. Geophys. Res.-Atmos., 124, 1846–1861,2019. 
[4] Kerminen, V. M., Wexler, A. S., and Potukuchi, S.: Growth of freshlynucleated particles in the troposphere: Roles of NH3, H2SO4, HNO3, and HCl,J. Geophys. Res.-Atmos., 102, 3715–3724, 1997. 
[5] Kolstad, E. W., Bracegirdle, T. J., and Seierstad, I. A.: Marine cold-airoutbreaks in the North Atlantic: Temporal distribution and associations withlarge-scale atmospheric circulation, Clim. Dynam., 33, 187–197, 2009. 
[6] Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P., Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H., Proctor, C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K., Bates, T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks, S. D., Cairns, B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M., Menden-Deuer, S., Morison, F., Quinn, P. K., Scarino, A. J., Anderson, B., Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, S., Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A., Martin, M. Y., and Ziemba, L.: TheNorth Atlantic aerosol and marine ecosystem study (NAAMES): science motiveand mission overview, Frontiers in Marine Science, 6, 122​​​​​​​, https://doi.org/10.3389/fmars.2019.00122, 2019. 
[7] McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M.,Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explainseasonal and spatial patterns of Southern Ocean cloud albedo, ScienceAdvances, 1, e1500157, https://doi.org/10.1126/sciadv.1500157,​​​​​​​ 2015. 
[8] McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying meteorologicalcontrols on open and closed mesoscale cellular convection associated withmarine cold air outbreaks, J. Geophys. Res.-Atmos.,122, 11678–11702, 2017. 
[9] Thompson, A. M., Witte, J. C., Hudson, R. D., Guo, H., Herman, J. R., andFujiwara, M.: Tropical tropospheric ozone and biomass burning, Science, 291,2128–2132, 2001. 
[10] Turner, D. D., Vogelmann, A., Austin, R. T., Barnard, J. C., Cady-Pereira,K., Chiu, J. C., Clough, S. A., Flynn, C., Khaiyer, M. M., and Liljegren,J.: Thin liquid water clouds: Their importance and our challenge, B.Am. Meteorol. Soc., 88, 177–190, 2007. 
[11] Thompson, A. M.: The oxidizing capacity of the Earth's atmosphere: Probablepast and future changes, Science, 256, 1157–1165, 1992. 
[12] China, S., Alpert, P. A., Zhang, B., Schum, S., Dzepina, K., Wright, K.,Owen, R. C., Fialho, P., Mazzoleni, L. R., and Mazzoleni, C.: Ice cloudformation potential by free tropospheric particles from long-range transportover the Northern Atlantic Ocean, J. Geophys. Res.-Atmos., 122, 3065–3079, 2017. 
[13] McCoy, I. L., Bretherton, C. S., Wood, R., Twohy, C. H., Gettelman, A.,Bardeen, C., and Toohey, D. W.: Recent Particle Formation and AerosolVariability Near Southern Ocean Low Clouds, J. Geophys. Res.-Atmos., https://doi.org/10.1002/essoar.10503719.1, submitted,​​​​​​​ 2020. 
[14] Carslaw, K., Lee, L., Reddington, C., Pringle, K., Rap, A., Forster, P.,Mann, G., Spracklen, D., Woodhouse, M., and Regayre, L.: Large contributionof natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71,2013. 
[15] Caldwell, P., Bretherton, C. S., and Wood, R.: Mixed-layer budget analysisof the diurnal cycle of entrainment in southeast Pacific stratocumulus,J. Atmos. Sci. 62, 3775–3791, 2005. 
[16] Mechem, D. B., Wittman, C. S., Miller, M. A., Yuter, S. E., and De Szoeke,S. P.: Joint synoptic and cloud variability over the Northeast Atlantic nearthe Azores, J. Appl. Meteorol. Clim., 57, 1273–1290,2018. 
[17] O'Dowd, C. D. and Smith, M. H.: Physicochemical properties of aerosols overthe northeast Atlantic: Evidence for wind-speed-related submicron sea-saltaerosol production, J. Geophys. Res.-Atmos., 98,1137–1149, 1993. 
[18] Brüggemann, M., Hayeck, N., and George, C.: Interfacial photochemistryat the ocean surface is a global source of organic vapors and aerosols,Nature communications, 9, 2101​​​​​​​, https://doi.org/10.1038/s41467-018-04528-7, 2018. 
[19] Meskhidze, N. and Nenes, A.: Phytoplankton and cloudiness in the SouthernOcean, Science, 314, 1419–1423, 2006. 
[20] Wang, J.: Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA), available at: http://arm.gov/research/campaigns/aaf2017ace-ena (last access: 17 July 2021), 2018. 
[21] Wang, Y., Pinterich, T., and Wang, J.: Rapid measurement of sub-micrometeraerosol size distribution using a fast integrated mobility spectrometer,J. Aerosol Sci., 121, 12–20, 2018. 
[22] Wang, J., Wood, R., Jensen, M. P., Chiu, J. C., Liu, Y., Desai, N.,Giangrande, S. E., Knopf, D. A., Kollias, P., Liu, X., Lu, C., Mechem, D.,Mei, F., Starzec, M., Wang, Y., Yum, S., Zheng, G., Aiken, A. C., Azevedo,B., Blanchard, Y., Dong, X., Gallo, F., Gao, S., Ghate, V. P., Glienke, S.,Goldberger, L., Hardin, J. C., Luke, E. P., Matthews, A. A., Miller, M. A.,Moffet, R., Schmid, B., Sedlacek, A. J., Shaw, R. A., Shilling, J. E.,Suski, K., Veghte, D. P., Weber, R., Wyant, M., Zawadowicz, M., and Zhang,Z.: Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA),B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-19-0220.1​​​​​​​, accepted, 2021. 
[23] DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., and Docherty, K. S.:Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer,Anal. Chem., 78, 8281–8289, 2006. 
[24] Mungall, E. L., Abbatt, J. P., Wentzell, J. J., Lee, A. K., Thomas, J. L.,Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., and Willis, M. D.:Microlayer source of oxygenated volatile organic compounds in the summertimemarine Arctic boundary layer, P. Natl. Acad.Sci. USA, 114, 6203–6208, 2017. 
[25] Dzepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and Mazzoleni, L. R.: Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume, Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, 2015. 
[26] Andreae, M. O.: Soot carbon and excess fine potassium: Long-range transportof combustion-derived aerosols, Science, 220, 1148–1151, 1983. 
[27] Russell, L. M., Lenschow, D. H., Laursen, K. K., Krummel, P. B., Siems, S.T., Bandy, A. R., Thornton, D. C., and Bates, T. S.: Bidirectional mixing inan ACE 1 marine boundary layer overlain by a second turbulent layer, J.Geophys. Res.-Atmos., 103, 16411–16432, 1998. 
[28] Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, 2018. 
[29] Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J.,Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., andBaltensperger, U.: Global atmospheric particle formation from CERN CLOUDmeasurements, Science, 354, 1119–1124, 2016. 
[30] Novelli, P., Masarie, K., and Lang, P.: Distributions and recent changes ofcarbon monoxide in the lower troposphere, J. Geophys. Res.-Atmos., 103, 19015–19033, 1998. 
[31] Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H., and Frisch,A. S.: The Atlantic stratocumulus transition experiment-ASTEX, B.Am. Meteorol. Soc., 76, 889–904, 1995. 
[32] O'Dowd, C., Monahan, C., and Dall'Osto, M.: On the occurrence of open oceanparticle production and growth events, Geophys. Res. Lett., 37, L19805, https://doi.org/10.1029/2010GL044679​​​​​​​,2010. 
[33] Fierz, M., Vernooij, M. G., and Burtscher, H.: An improved low-flowthermodenuder, J. Aerosol Sci., 38, 1163–1168, 2007. 
[34] Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.S.: Carbohydrate-like composition of submicron atmospheric particles andtheir production from ocean bubble bursting, P. Natl.Acad. Sci. USA, 107, 6652–6657, 2010. 
[35] Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., and Nilsson, E. D.:Primary submicron marine aerosol dominated by insoluble organic colloids andaggregates, Geophys. Res. Lett., 35, L17814, https://doi.org/10.1029/2008GL034210, 2008. 
[36] Sanchez, K. J., Chen, C.-L., Russell, L. M., Betha, R., Liu, J., Price, D.J., Massoli, P., Ziemba, L. D., Crosbie, E. C., and Moore, R. H.:Substantial seasonal contribution of observed biogenic sulfate particles tocloud condensation nuclei, Scientific Reports, 8, 3235​​​​​​​, https://doi.org/10.1038/s41598-018-21590-9, 2018. 
[37] Bates, T. S., Kapustin, V. N., Quinn, P. K., Covert, D. S., Coffman, D. J.,Mari, C., Durkee, P. A., De Bruyn, W. J., and Saltzman, E. S.: Processescontrolling the distribution of aerosol particles in the lower marineboundary layer during the First Aerosol Characterization Experiment (ACE 1),J. Geophys. Res.-Atmos., 103, 16369–16383, 1998. 
[38] Ghate, V. P., Miller, M. A., Albrecht, B. A., and Fairall, C. W.:Thermodynamic and radiative structure of stratocumulus-topped boundarylayers, J. Atmos. Sci., 72, 430–451, 2015. 
[39] Bates, T., Quinn, P., Frossard, A., Russell, L., Hakala, J., Petäjä,T., Kulmala, M., Covert, D., Cappa, C., and Li, S. M.: Measurements of oceanderived aerosol off the coast of California, J. Geophys.Res.-Atmos., 117, D00V15, https://doi.org/10.1029/2012JD017588,​​​​​​​ 2012. 
[40] Schmid, B., Tomlinson, J. M., Hubbe, J. M., Comstock, J. M., Mei, F., Chand,D., Pekour, M. S., Kluzek, C. D., Andrews, E., and Biraud, S.: The DOE ARMaerial facility, B. Am. Meteorol. Soc., 95,723–742, 2014. 
[41] Bates, T. S., Quinn, P. K., Covert, D. S., Coffman, D. J., Johnson, J. E.,and Wiedensohler, A.: Aerosol physical properties and processes in the lowermarine boundary layer: A comparison of shipboard sub-micron data from ACE-1and ACE-2, Tellus B, 52, 258–272, 2000. 
[42] Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: Themodern-era retrospective analysis for research and applications, version 2(MERRA-2), J. Climate, 30, 5419–5454, 2017. 
[43] Gurciullo, C., Lerner, B., Sievering, H., and Pandis, S.: Heterogeneoussulfate production in the remote marine environment: Cloud processing andsea-salt particle contributions, J. Geophys. Res.-Atmos., 104, 21719–21731, 1999. 
[44] Spivakovsky, C., Yevich, R., Logan, J., Wofsy, S., McElroy, M., and Prather,M.: Tropospheric OH in a three-dimensional chemical tracer model: Anassessment based on observations of CH3CCl3, J. Geophys.Res.-Atmos., 95, 18441–18471, 1990. 
[45] Ayers, G. and Gillett, R.: DMS and its oxidation products in the remotemarine atmosphere: implications for climate and atmospheric chemistry,J. Sea Res., 43, 275–286, 2000. 
[46] Sciare, J., Oikonomou, K., Favez, O., Liakakou, E., Markaki, Z., Cachier, H., and Mihalopoulos, N.: Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning, Atmos. Chem. Phys., 8, 5551–5563, https://doi.org/10.5194/acp-8-5551-2008, 2008. 
[47] Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., andNgan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modelingsystem, B. Am. Meteorol. Soc., 96, 2059–2077,2015. 
[48] Zheng, G., Wang, Y., Wood, R., Jensen, M. P., Kuang, C., McCoy, I. L.,Matthews, A., Mei, F., Tomlinson, J. M., and Shilling, J. E.: New particleformation in the remote marine boundary layer, Nat. Commun., 12,527, https://doi.org/10.1038/s41467-020-20773-1​​​​​​​, 2021. 
[49] Raes, F., Bates, T., McGovern, F., and Van Liedekerke, M.: The 2nd AerosolCharacterization Experiment (ACE-2): General overview and main results,Tellus B, 52, 111–125, 2000. 
[50] Hoell, C., O’Dowd, C., Osborne, S., and Johnson, D.: Chemical and Physical Meteorology, Tellus B, 52, 423–438, 2000. 
[51] Raes, F.: Entrainment of free tropospheric aerosols as a regulatingmechanism for cloud condensation nuclei in the remote marine boundary layer,J. Geophys. Res.-Atmos., 100, 2893–2903, 1995. 
[52] Zheng, G., Sedlacek, A. J., Aiken, A. C., Feng, Y., Watson, T. B.,Raveh-Rubin, S., Uin, J., Lewis, E. R., and Wang, J.: Long-range transportedNorth American wildfire aerosols observed in marine boundary layer ofeastern North Atlantic, Environ. Int., 139, 105680, https://doi.org/10.1016/j.envint.2020.105680,​​​​​​​ 2020b. 
[53] Holanda, B. A., Pöhlker, M. L., Walter, D., Saturno, J., Sörgel, M., Ditas, J., Ditas, F., Schulz, C., Franco, M. A., Wang, Q., Donth, T., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Braga, R., Brito, J., Cheng, Y., Dollner, M., Kaiser, J. W., Klimach, T., Knote, C., Krüger, O. O., Fütterer, D., Lavrič, J. V., Ma, N., Machado, L. A. T., Ming, J., Morais, F. G., Paulsen, H., Sauer, D., Schlager, H., Schneider, J., Su, H., Weinzierl, B., Walser, A., Wendisch, M., Ziereis, H., Zöger, M., Pöschl, U., Andreae, M. O., and Pöhlker, C.: Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke, Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, 2020. 
[54] Hegg, D. A. and Hobbs, P. V.: Cloud water chemistry and the production ofsulfates in clouds, Atmos. Environ.​​​​​​​, 15, 1597–1604, 1981. 
[55] Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., Jimenez, J. L., and Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, 2019. 
[56] Quinn, P., Coffman, D., Johnson, J., Upchurch, L., and Bates, T.: Smallfraction of marine cloud condensation nuclei made up of sea spray aerosol,Nat. Geosci., 10, 674–679, 2017. 
[57] Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., and Seinfeld,J. H.: Bringing the ocean into the laboratory to probe the chemicalcomplexity of sea spray aerosol, P. Natl. Acad.Sci. USA, 110, 7550–7555, 2013. 
[58] Rémillard, J. and Tselioudis, G.: Cloud regime variability over theAzores and its application to climate model evaluation, J. Climate,28, 9707–9720, 2015. 
[59] Zawadowicz, M. A., Suski, K., Liu, J., Pekour, M., Fast, J., Mei, F., Sedlacek, A. J., Springston, S., Wang, Y., Zaveri, R. A., Wood, R., Wang, J., and Shilling, J. E.: Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic, Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, 2021. 
[60] Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine boundarylayer cloud observations in the Azores, J. Climate, 25, 7381–7398,2012. 
[61] Honrath, R., Owen, R. C., Val Martin, M., Reid, J., Lapina, K., Fialho, P.,Dziobak, M. P., Kleissl, J., and Westphal, D.: Regional and hemisphericimpacts of anthropogenic and biomass burning emissions on summertime CO andO3 in the North Atlantic lower free troposphere, J. Geophys.Res.-Atmos., 109, D24310, https://doi.org/10.1029/2004JD005147, 2004. 
[62] Huebert, B. J., Pszenny, A., and Blomquist, B.: The ASTEX/MAGE Experiment,J. Geophys. Res.-Atmos., 101, 4319–4329, 1996. 
[63] Hoppel, W., Frick, G., Fitzgerald, J., and Larson, R.: Marine boundary layermeasurements of new particle formation and the effects nonprecipitatingclouds have on aerosol size distribution, J. Geophys. Res.-Atmos., 99, 14443–14459, 1994. 
[64] Yoon, Y., Ceburnis, D., Cavalli, F., Jourdan, O., Putaud, J., Facchini, M.,Decesari, S., Fuzzi, S., Sellegri, K., and Jennings, S.: Seasonalcharacteristics of the physicochemical properties of North Atlantic marineatmospheric aerosols, J. Geophys. Res.-Atmos., 112, D04206, https://doi.org/10.1029/2005JD007044​​​​​​​,2007. 
[65] Abdalmogith, S. S. and Harrison, R. M.: The use of trajectory clusteranalysis to examine the long-range transport of secondary inorganic aerosolin the UK, Atmos. Environ., 39, 6686–6695, 2005. 
[66] Zheng, G., Wang, Y., Aiken, A. C., Gallo, F., Jensen, M. P., Kollias, P., Kuang, C., Luke, E., Springston, S., Uin, J., Wood, R., and Wang, J.: Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes, Atmos. Chem. Phys., 18, 17615–17635, https://doi.org/10.5194/acp-18-17615-2018, 2018. 
[67] Zheng, G., Kuang, C., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer, Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, 2020a. 
[68] Dall'Osto, M., Ceburnis, D., Monahan, C., Worsnop, D. R., Bialek, J.,Kulmala, M., Kurtén, T., Ehn, M., Wenger, J., and Sodeau, J.:Nitrogenated and aliphatic organic vapors as possible drivers for marinesecondary organic aerosol growth, J. Geophys. Res.-Atmos., 117, D12311, https://doi.org/10.1029/2012JD017522, 2012. 
[69] Clarke, A. D., Freitag, S., Simpson, R. M. C., Hudson, J. G., Howell, S. G., Brekhovskikh, V. L., Campos, T., Kapustin, V. N., and Zhou, J.: Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections, Atmos. Chem. Phys., 13, 7511–7529, https://doi.org/10.5194/acp-13-7511-2013, 2013. 
[70] Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005. 
[71] Holloway, T., Levy, H., and Kasibhatla, P.: Global distribution of carbonmonoxide, J. Geophys. Res.-Atmos., 105, 12123–12147,2000. 
[72] Clarke, A., Varner, J., Eisele, F., Mauldin, R., Tanner, D., and Litchy, M.:Particle production in the remote marine atmosphere: Cloud outflow andsubsidence during ACE 1, J. Geophys. Res.-Atmos., 103,16397–16409, 1998. 
[73] Rasmussen, B. B., Nguyen, Q. T., Kristensen, K., Nielsen, L. S., and Bilde,M.: What controls volatility of sea spray aerosol? Results from laboratorystudies using artificial and real seawater samples, J. AerosolSci., 107, 134–141, 2017. 
[74] Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb,C. E., and Worsnop, D. R.: Development of an aerosol mass spectrometer forsize and composition analysis of submicron particles, Aerosol Sci.Tech., 33, 49–70, 2000. 
[75] Ovadnevaite, J., Ceburnis, D., Leinert, S., Dall'Osto, M., Canagaratna, M.,O'Doherty, S., Berresheim, H., and O'Dowd, C.: Submicron NE Atlantic marineaerosol chemical composition and abundance: Seasonal trends and air masscategorization, J. Geophys. Res.-Atmos., 119,11850–11863, 2014. 
[76] Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011. 
[77] Jaffe, D., Bertschi, I., Jaeglé, L., Novelli, P., Reid, J. S., Tanimoto,H., Vingarzan, R., and Westphal, D. L.: Long-range transport of Siberianbiomass burning emissions and impact on surface ozone in western NorthAmerica, Geophys. Res. Lett., 31, L16106, https://doi.org/10.1029/2004GL020093, 2004. 
[78] Wood, R., Stemmler, J. D., Rémillard, J., and Jefferson, A.: Low-CCNconcentration air masses over the eastern North Atlantic: Seasonality,meteorology, and drivers, J. Geophys. Res.-Atmos., 122,1203–1223, 2017. 
[79] Wyant, M. C., Bretherton, C. S., Bacmeister, J. T., Kiehl, J. T., Held, I.M., Zhao, M., Klein, S. A., and Soden, B. J.: A comparison of low-latitudecloud properties and their response to climate change in three AGCMs sortedinto regimes using mid-tropospheric vertical velocity, Clim. Dynam., 27,261–279, 2006. 
[80] Willis, M. D., Burkart, J., Thomas, J. L., Köllner, F., Schneider, J., Bozem, H., Hoor, P. M., Aliabadi, A. A., Schulz, H., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Growth of nucleation mode particles in the summertime Arctic: a case study, Atmos. Chem. Phys., 16, 7663–7679, https://doi.org/10.5194/acp-16-7663-2016, 2016. 
[81] Willis, M. D., Köllner, F., Burkart, J., Bozem, H., Thomas, J. L.,Schneider, J., Aliabadi, A. A., Hoor, P. M., Schulz, H., and Herber, A. B.:Evidence for marine biogenic influence on summertime Arctic aerosol,Geophys. Res. Lett., 44, 6460–6470, 2017. 
[82] Wood, R. and Bretherton, C. S.: Boundary layer depth, entrainment, anddecoupling in the cloud-capped subtropical and tropical marine boundarylayer, J. climate, 17, 3576–3588, 2004. 
[83] O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J.-P.: Biogenically drivenorganic contribution to marine aerosol, Nature, 431, 676–680, 2004. 
[84] Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T.,Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., and Jimenez,J. L.: A large source of cloud condensation nuclei from new particleformation in the tropics, Nature, 574, 399–403, 2019. 
[85] Ovadnevaite, J., O'Dowd, C., Dall'Osto, M., Ceburnis, D., Worsnop, D. R.,and Berresheim, H.: Detecting high contributions of primary organic matterto marine aerosol: A case study, Geophys. Res. Lett., 38, L02807, https://doi.org/10.1029/2010GL046083​​​​​​​, 2011. 
[86] Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., and Weber, R.J.: Refinements to the particle-into-liquid sampler (PILS) for ground andairborne measurements of water soluble aerosol composition, Atmos.Environ., 37, 1243–1259, 2003. 
[87] Jaeglé, L., Wood, R., and Wargan, K.: Multiyear Composite View of OzoneEnhancements and Stratosphere-to-Troposphere Transport in Dry Intrusions ofNorthern Hemisphere Extratropical Cyclones, J. Geophys. Res.-Atmos., 122, 13436–13457, 2017. 
[88] Kaufman, Y. J. and Tanré, D.: Effect of variations in super-saturationon the formation of cloud condensation nuclei, Nature, 369, 45–48, 1994. 
[89] Pirjola, L., O'Dowd, C. D., Brooks, I. M., and Kulmala, M.: Can new particleformation occur in the clean marine boundary layer?, J. Geophys.Res.-Atmos., 105, 26531–26546, 2000. 
[90] Karl, M., Gross, A., Pirjola, L., and Leck, C.: A new flexiblemulticomponent model for the study of aerosol dynamics in the marineboundary layer, Tellus B, 63, 1001–1025,2011. 
[91] Johnson, D. W., Osborne, S., Wood, R., Suhre, K., Johnson, R., Businger, S.,Quinn, P. K., Wiedensohler, A., Durkee, P. A., and Russell, L. M.: Anoverview of the Lagrangian experiments undertaken during the North Atlanticregional Aerosol Characterisation Experiment (ACE-2), Tellus B, 52, 290–320, 2000. 
[92] Wood, R., Köhler, M., Bennartz, R., and O'Dell, C.: The diurnal cycle ofsurface divergence over the global oceans, Q. J. Roy.Meteor. Soc., 135, 1484–1493, 2009. 
[93] Wood, R., Leon, D., Lebsock, M., Snider, J., and Clarke, A. D.:Precipitation driving of droplet concentration variability in marine lowclouds, J. Geophys. Res.-Atmos., 117, D19210, https://doi.org/10.1029/2012JD018305​​​​​​​, 2012. 
[94] Wood, R., Wyant, M., Bretherton, C. S., Rémillard, J., Kollias, P.,Fletcher, J., Stemmler, J., De Szoeke, S., Yuter, S., and Miller, M.:Clouds, aerosols, and precipitation in the marine boundary layer: An armmobile facility deployment, B. Am. Meteorol. Soc.,96, 419–440, 2015. 
[95] Parrish, D., Trainer, M., Holloway, J., Yee, J., Warshawsky, M., Fehsenfeld,F., Forbes, G., and Moody, J.: Relationships between ozone and carbonmonoxide at surface sites in the North Atlantic region, J.Geophys. Res.-Atmos., 103, 13357–13376, 1998. 
[96] Pierce, J. R., Croft, B., Kodros, J. K., D'Andrea, S. D., and Martin, R. V.: The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects, Atmos. Chem. Phys., 15, 6147–6158, https://doi.org/10.5194/acp-15-6147-2015, 2015. 
[97] Jickells, T., Kelly, S., Baker, A., Biswas, K., Dennis, P., Spokes, L.,Witt, M., and Yeatman, S.: Isotopic evidence for a marine ammonia source,Geophys. Res. Lett., 30, 1374, https://doi.org/10.1029/2002GL016728, 2003. 
浏览 119次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次