首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 21 ,Issue 14 ,2021-07-21
Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity
Yingnan Zhang 1 Likun Xue 1 , 2 William P. L. Carter 3 Chenglei Pei 4 , 5 , 6 , 7 Tianshu Chen 1 Jiangshan Mu 1 Yujun Wang 6 Qingzhu Zhang 1 Wenxing Wang 1
Show affiliations
DOI:10.5194/acp-21-11053-2021
PDF
摘要

We developed incremental reactivity (IR) scales for 116 volatile organic compounds (VOCs) in a Chinese megacity (Guangzhou) and elucidated their application in calculating the ozone (O3) formation potential (OFP) in China. Two sets of model inputs (emission-based and observation-based) were designed to localize the IR scales in Guangzhou using the Master Chemical Mechanism (MCM) box model and were also compared with those of the US. The two inputs differed in how primary pollutant inputs in the model were derived, with one based on emission data and the other based on observed pollutant levels, but the maximum incremental reactivity (MIR) scales derived from them were fairly similar. The IR scales showed a strong dependence on the chemical mechanism (MCM vs. Statewide Air Pollution Research Center), and a higher consistency was found in IR scales between China and the US using a similar chemical mechanism. With a given chemical mechanism, the MIR scale for most VOCs showed a relatively small dependence on environmental conditions. However, when the NOx availability decreased, the IR scales became more sensitive to environmental conditions and the discrepancy between the IR scales obtained from emission-based and observation-based inputs increased, thereby implying the necessity to localize IR scales over mixed-limited or NOx-limited areas. This study provides recommendations for the application of IR scales, which has great significance for VOC control in China and other countries suffering from serious O3 air pollution.

授权许可

Copyright: © 2021 Yingnan Zhang et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Yingnan Zhang,Likun Xue,William P. L. Carter,Chenglei Pei,Tianshu Chen,Jiangshan Mu,Yujun Wang,Qingzhu Zhang,Wenxing Wang. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmospheric Chemistry and Physics ,Vol.21, Issue 14(2021)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Wolfe, G. M.: AirChem/F0AM, Github, available at: https://github.com/AirChem/F0AM, last access: 12 December 2020. 
[2] Carter, W. P. L. and Atkinson, R.:Computer modeling study of incremental hydrocarbon reactivity,Environ. Sci. Technol.,23, 864–880, https://doi.org/10.1021/es00065a017, 1989. 
[3] Fleming, Z. L., Doherty, R. M., von Schneidemesser, E., Malley, C. S., Cooper, O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G., Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.:Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health,Elementa Science of the Anthropocene,6, 12, https://doi.org/10.1525/elementa.273, 2018. 
[4] Chang, T. Y. and Rudy, S. J.:Ozone-forming potential of organic emissions from alternative-fueled vehicles,Atmos. Environ.,24, 2421–2430, https://doi.org/10.1016/0960-1686(90)90335-K, 1990. 
[5] Chen, S., Wang, H., Lu, K., Zeng, L., Hu, M., and Zhang, Y.:The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity,Atmos. Environ.,242, 117801, https://doi.org/10.1016/j.atmosenv.2020.117801, 2020. 
[6] Derwent, R. G., Jenkin, M. E., Pilling, M. J., Carter, W. P. L., and Kaduwela, A.:Reactivity Scales as Comparative Tools for Chemical Mechanisms,J. Air Waste Manage.,60, 914–924, https://doi.org/10.3155/1047-3289.60.8.914, 2010. 
[7] Wang, S., Wei, W., Du, L., Li, G., and Hao, J.:Characteristics of gaseous pollutants from biofuel-stoves in rural China,Atmos. Environ.,43, 4148–4154, https://doi.org/10.1016/j.atmosenv.2009.05.040, 2009. 
[8] Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects,Sci. Total Environ.,575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017. 
[9] Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation, Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, 2019. 
[10] Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) v3.1, Geosci. Model Dev., 9, 3309–3319, https://doi.org/10.5194/gmd-9-3309-2016, 2016. 
[11] Venecek, M. A., Carter, W. P. L., and Kleeman, M. J.:Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010,J. Air Waste Manage.,68, 1301–1316, https://doi.org/10.1080/10962247.2018.1498410, 2018. 
[12] Wang, T., Dai, J., Lam, K. S., Nan Poon, C., and Brasseur, G. P.:Twenty-Five Years of Lower Tropospheric Ozone Observations in Tropical East Asia: The Influence of Emissions and Weather Patterns,Geophys. Res. Lett.,46, 11463–11470, https://doi.org/10.1029/2019gl084459, 2019. 
[13] IPCC:Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535,Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 2013. 
[14] Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., Huang, D., Wang, Q., and An, J.:Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport,Atmos. Environ.,215, 116902, https://doi.org/10.1016/j.atmosenv.2019.116902, 2019. 
[15] Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y., Zhai, R., and Wang, Z.:VOC characteristics, chemical reactivity and sources in urban Wuhan, central China,Atmos. Environ.,224, 117340, https://doi.org/10.1016/j.atmosenv.2020.117340, 2020. 
[16] Hong, Z., Li, M., Wang, H., Xu, L., Hong, Y., Chen, J., Chen, J., Zhang, H., Zhang, Y., Wu, X., Hu, B., and Li, M.:Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two urban sites in the southeast of China,Sci. Total Environ.,657, 1491–1500, https://doi.org/10.1016/j.scitotenv.2018.12.132, 2019. 
[17] McNair, L. A., Russell, A. G., Odman, M. T., Croes, B. E., and Kao, L.:Airshed Model Evaluation of Reactivity Adjustment Factors Calculated with the Maximum Incremental Reactivity Scale for Transitional-Low Emission Vehicles,J. Air Waste Manage.,44, 900–907, https://doi.org/10.1080/1073161X.1994.10467291, 1994. 
[18] McGillen, M. R., Carter, W. P. L., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., and Wallington, T. J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds, Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, 2020. 
[19] Japar, S. M., Wallington, T. J., Rudy, S. J., and Chang, T. Y.:Ozone-forming potential of a series of oxygenated organic compounds,Environ. Sci. Technol.,25, 415–420, https://doi.org/10.1021/es00015a006, 1991. 
[20] Bergin, M. S., Russell, A. G., and Milford, J. B.:Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model,Environ. Sci. Technol.,32, 694–703, https://doi.org/10.1021/es9704489, 1998. 
[21] Mo, Z., Huang, S., Yuan, B., Pei, C., Song, Q., Qi, J., Wang, M., Wang, B., Wang, C., Li, M., Zhang, Q., and Shao, M.:Deriving emission fluxes of volatile organic compounds from tower observation in the Pearl River Delta, China,Sci. Total Environ.,741, 139763, https://doi.org/10.1016/j.scitotenv.2020.139763, 2020. 
[22] Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020, 2020. 
[23] Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003. 
[24] Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015. 
[25] Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.:Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation,Elementa Science of the Anthropocene,6, 47, https://doi.org/10.1525/elementa.302, 2018. 
[26] Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. 
[27] Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C., Araminiene, V., Blande, J., Hayes, F., Calatayud, V., Domingos, M., Veresoglou, S., Peñuelas, J., Wardle, D., Marco, A., Li, Z., Harmens, H., Yuan, X., Vitale, M., and Paoletti, E.:Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems andbiodiversity,Science Advances,6, eabc1176, https://doi.org/10.1126/sciadv.abc1176, 2020. 
[28] Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.:Characteristics and source apportionment of VOCs measured in Shanghai, China,Atmos. Environ.,44, 5005–5014, https://doi.org/10.1016/j.atmosenv.2010.07.059, 2010. 
[29] Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J.:The Mechanisms of Reactions Influencing AtmosphericOzone, Oxford University Press, New York, 2015. 
[30] Bowman, F. M. and Seinfeld, J. H.:Atmospheric chemistry of alternate fuels and reformulated gasoline components,Prog. Energ. Combus.,21, 387–417, https://doi.org/10.1016/0360-1285(95)00008-9, 1995. 
[31] Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018. 
[32] Zhang, Y., Xue, L., Dong, C., Wang, T., Mellouki, A., Zhang, Q., and Wang, W.: Gaseous carbonyls in China's atmosphere: Tempo-spatial distributions, sources, photochemical formation, and impact on air quality,Atmos. Environ., 214, 116863, https://doi.org/10.1016/j.atmosenv.2019.116863, 2019. 
[33] Lefohn, A. S., Malley, C. S., Smith, L., Wells, B., Hazucha, M., Simon, H., Naik, V., Mills, G., Schultz, M. G., Paoletti, E., De Marco, A., Xu, X., Zhang, L., Wang, T., Neufeld, H. S., Musselman, R. C., Tarasick, D., Brauer, M., Feng, Z., Tang, H., Kobayashi, K., Sicard, P., Solberg, S., and Gerosa, G.:Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research,Elementa Science of the Anthropocene,6, 27, https://doi.org/10.1525/elementa.279, 2018. 
[34] Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H., and Louie, P. K. K.:Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or Long-Term Attainment,Environ. Sci. Technol.,50, 5720–5728, https://doi.org/10.1021/acs.est.6b00345, 2016. 
[35] Russell, A., Milford, J., Bergin, M., McBride, S., McNair, L., Yang, Y., Stockwell, W., and Croes, B.:Urban ozone control and atmospheric reactivity of organic gases,Science,269, 491–495, 1995. 
[36] Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., Zeng, L., Liu, J., Liu, W., and Zhang, Y.:An observational study of the HONO–NO2 coupling at an urban site in Guangzhou City, South China,Atmos. Environ.,43, 5731–5742, https://doi.org/10.1016/j.atmosenv.2009.08.017, 2009. 
[37] Zhang, Y.: Guangzhou dataset, Mendeley Data, V1, https://doi.org/10.17632/2y752t39yn.1, 2021. 
[38] Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.:Atmospheric oxidation capacity sustained by a tropical forest,Nature,452, 737–740, https://doi.org/10.1038/nature06870, 2008. 
[39] Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. 
[40] Leduc, D. J.:A comparative analysis of the reduced major axis technique of fitting lines to bivariate data,Can. J. Forest Res.,17, 654–659, https://doi.org/10.1139/x87-107, 1987. 
[41] Carter, W. P. L.:Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications, California Air Resources Board Contract, 2009,Report Prepared for California Air Resources Board Contract No. 07-339, California Air Resource Board Press, California, 339 pp., 2009. 
[42] Carter, W. P. L.:Calculation of Reactivity Scales Using an Updated Carbon Bond IV Mechanism,Report Prepared for Systems Applications Internation for the Auto/Oil Air Quality Improvement Program, California Air Resource Board Press, California, 1994b. 
[43] Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, 2014. 
[44] Xue, L. K., Wang, T., Guo, H., Blake, D. R., Tang, J., Zhang, X. C., Saunders, S. M., and Wang, W. X.: Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory, Atmos. Chem. Phys., 13, 8551–8567, https://doi.org/10.5194/acp-13-8551-2013, 2013. 
[45] Carter, W. P. L.:Development of the SAPRC-07 chemical mechanism,Atmos. Environ.,44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010. 
[46] Stockwell, W. R., Geiger, H., and Becker, K. H.:Estimation of incremental reactivities for multiple day scenarios: an application to ethane and dimethyoxymethane,Atmos. Environ.,35, 929–939, https://doi.org/10.1016/S1352-2310(00)00354-X, 2001. 
[47] Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang, Y., Bo, Y., Su, H., Cheng, Y., and He, K.: Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential, Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, 2019. 
[48] Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission changes and implications for multi-pollutant control, Atmos. Chem. Phys., 20, 6323–6337, https://doi.org/10.5194/acp-20-6323-2020, 2020. 
[49] Sun, J., Li, Z., Xue, L., Wang, T., Wang, X., Gao, J., Nie, W., Simpson, I. J., Gao, R., Blake, D. R., Chai, F., and Wang, W.:Summertime C1-C5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms,Atmos. Res.,204, 102–109, https://doi.org/10.1016/j.atmosres.2018.01.014, 2018. 
[50] Xu, X., Lin, W., Xu, W., Jin, J., Wang, Y., Zhang, G., Zhang, X., Ma, Z., Dong, Y., Ma, Q., Yu, D., Li, Z., Wang, D., and Zhao, H.:Long-term changes of regional ozone in China: implications for human health and ecosystem impacts,Elementa Science of the Anthropocene,8, 13, https://doi.org/10.1525/journal.elementa.409, 2020. 
[51] Sun, L., Xue, L., Wang, T., Gao, J., Ding, A., Cooper, O. R., Lin, M., Xu, P., Wang, Z., Wang, X., Wen, L., Zhu, Y., Chen, T., Yang, L., Wang, Y., Chen, J., and Wang, W.: Significant increase of summertime ozone at Mount Tai in Central Eastern China, Atmos. Chem. Phys., 16, 10637–10650, https://doi.org/10.5194/acp-16-10637-2016, 2016. 
[52] Carter, W. P. L.:Development of Ozone Reactivity Scales for Volatile Organic Compounds,J. Air Waste Manage.,44, 881–899, https://doi.org/10.1080/1073161X.1994.10467290, 1994a. 
[53] Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019. 
[54] Li, L., Xie, S., Zeng, L., Wu, R., and Li, J.:Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing–Tianjin–Hebei region, China,Atmos. Environ.,113, 247–254, https://doi.org/10.1016/j.atmosenv.2015.05.021, 2015. 
文献评价指标
浏览 106次
下载全文 7次
评分次数 0次
用户评分 0.0分
分享 0次