首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-12-21
Phylogenomics of white-eyes, a ‘great speciator’, reveals Indonesian archipelago as the center of lineage diversity
Evolutionary Biology
Chyi Yin Gwee 1 Kritika M Garg 1 Balaji Chattopadhyay 1 Keren R Sadanandan 1 , 2 Dewi M Prawiradilaga 3 Martin Irestedt 4 Fumin Lei 5 , 6 Luke M Bloch 7 Jessica GH Lee 8 Mohammad Irham 3 Tri Haryoko 3 Malcolm CK Soh 9 Kelvin S-H Peh 10 Karen MC Rowe 11 Teuku Reza Ferasyi 12 , 13 Shaoyuan Wu 14 , 15 Guinevere OU Wogan 16 Rauri CK Bowie 7 Frank E Rheindt 1
Show affiliations
DOI:10.7554/eLife.62765
Received 2020-09-03, accepted for publication 2020-12-21, Published 2020-12-21
PDF
摘要

Archipelagoes serve as important ‘natural laboratories’ which facilitate the study of island radiations and contribute to the understanding of evolutionary processes. The white-eye genus Zosterops is a classical example of a ‘great speciator’, comprising c. 100 species from across the Old World, most of them insular. We achieved an extensive geographic DNA sampling of Zosterops by using historical specimens and recently collected samples. Using over 700 genome-wide loci in conjunction with coalescent species tree methods and gene flow detection approaches, we untangled the reticulated evolutionary history of Zosterops, which comprises three main clades centered in Indo-Africa, Asia, and Australasia, respectively. Genetic introgression between species permeates the Zosterops phylogeny, regardless of how distantly related species are. Crucially, we identified the Indonesian archipelago, and specifically Borneo, as the major center of diversity and the only area where all three main clades overlap, attesting to the evolutionary importance of this region.

关键词

Other;avian;white-eye;Asia;target enrichment;phylogeny;bird

授权许可

© 2020, Gwee et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Chyi Yin Gwee,Kritika M Garg,Balaji Chattopadhyay,Keren R Sadanandan,Dewi M Prawiradilaga,Martin Irestedt,Fumin Lei,Luke M Bloch,Jessica GH Lee,Mohammad Irham,Tri Haryoko,Malcolm CK Soh,Kelvin S-H Peh,Karen MC Rowe,Teuku Reza Ferasyi,Shaoyuan Wu,Guinevere OU Wogan,Rauri CK Bowie,Frank E Rheindt. Phylogenomics of white-eyes, a ‘great speciator’, reveals Indonesian archipelago as the center of lineage diversity. eLife ,Vol.9(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] H Xu, X Luo, J Qian, X Pang. et al.(2012). FastUniq: a fast de novo duplicates removal tool for paired short reads. PLOS ONE.7. DOI: 10.5061/dryad.8931zcrmt.
[2] R Hall. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences.20:353-431. DOI: 10.5061/dryad.8931zcrmt.
[3] Y Zheng, A Janke. (2018). Gene flow analysis method, the D-statistic, is robust in a wide parameter space. BMC Bioinformatics.19. DOI: 10.5061/dryad.8931zcrmt.
[4] R Hall. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics.570-571:1-41. DOI: 10.5061/dryad.8931zcrmt.
[5] GF Mees. (1957). A systematic review of the Indo-Australian Zosteropidae (Part I). Zoologische Verhandelingen.35:1-204. DOI: 10.5061/dryad.8931zcrmt.
[6] E Mayr. (1965). Breviora:1-6. DOI: 10.5061/dryad.8931zcrmt.
[7] AE Morales, ND Jackson, TA Dewey, BC O'Meara. et al.(2017). Speciation with gene flow in north american bats. Systematic Biology.66:440-452. DOI: 10.5061/dryad.8931zcrmt.
[8] M Heads. (2001). Birds of paradise, biogeography and ecology in New Guinea: a review. Journal of Biogeography.28:893-925. DOI: 10.5061/dryad.8931zcrmt.
[9] RJ Whittaker, JM Fernández-Palacios. (2007). Island Biogeography: Ecology, Evolution, and Conservation. DOI: 10.5061/dryad.8931zcrmt.
[10] N Wickramasinghe, VV Robin, U Ramakrishnan, S Reddy. et al.(2017). Non-sister sri lankan white-eyes (genus ) are a result of independent colonizations. PLOS ONE.12. DOI: 10.5061/dryad.8931zcrmt.
[11] BH Warren, E Bermingham, RP Prys-Jones, C Thébaud. et al.(2006). Immigration, species radiation and extinction in a highly diverse songbird lineage: white-eyes on indian ocean islands. Molecular Ecology.15:3769-3786. DOI: 10.5061/dryad.8931zcrmt.
[12] KM Garg, B Chattopadhyay, PR Wilton, D Malia Prawiradilaga. et al.(2018). Pleistocene land bridges act as semipermeable agents of avian gene flow in wallacea. Molecular Phylogenetics and Evolution.125:196-203. DOI: 10.5061/dryad.8931zcrmt.
[13] AR Wallace. (1962). The Malay Archipelago: The Land of the Orang-Utan and the Bird of Paradise; a Narrative of Travel, with Studies of Man and Nature. DOI: 10.5061/dryad.8931zcrmt.
[14] RE Green, J Krause, AW Briggs, T Maricic. et al.(2010). A draft sequence of the neandertal genome. Science.328:710-722. DOI: 10.5061/dryad.8931zcrmt.
[15] M Martin. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal.17:10-12. DOI: 10.5061/dryad.8931zcrmt.
[16] NJ Matzke. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology.63:951-970. DOI: 10.5061/dryad.8931zcrmt.
[17] FC Martins, SC Cox, M Irestedt, RP Prŷs-Jones. et al.(2020). A comprehensive molecular phylogeny of Afrotropical white-eyes (Aves: Zosteropidae) highlights prior underestimation of mainland diversity and complex colonisation history. Molecular Phylogenetics and Evolution.149. DOI: 10.5061/dryad.8931zcrmt.
[18] CY Gwee, L Christidis, JA Eaton, JA Norman. et al.(2017). Bioacoustic and multi-locus DNA data of owls support high incidence of extinction and recolonisation on small, low-lying islands across Wallacea. Molecular Phylogenetics and Evolution.109:246-258. DOI: 10.5061/dryad.8931zcrmt.
[19] R Gutenkunst, R Hernandez, S Williamson, C Bustamante. et al.(2010). Diffusion approximations for demographic inference: dadi. Nature Precedings.1. DOI: 10.5061/dryad.8931zcrmt.
[20] HK Voris. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography.27:1153-1167. DOI: 10.5061/dryad.8931zcrmt.
[21] T van der Valk, F Lona Durazo, L Dalén, K Guschanski. et al.(2017). Whole mitochondrial genome capture from faecal samples and museum-preserved specimens. Molecular Ecology Resources.17:e111-e121. DOI: 10.5061/dryad.8931zcrmt.
[22] H Ellegren, L Smeds, R Burri, PI Olason. et al.(2012). The genomic landscape of species divergence in Ficedula flycatchers. Nature.491:756-760. DOI: 10.5061/dryad.8931zcrmt.
[23] C Camacho, G Coulouris, V Avagyan, N Ma. et al.(2009). BLAST+: architecture and applications. BMC Bioinformatics.10. DOI: 10.5061/dryad.8931zcrmt.
[24] L Excoffier, M Foll. (2011). fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics.27:1332-1334. DOI: 10.5061/dryad.8931zcrmt.
[25] T Cai, S Shao, JD Kennedy, P Alström. et al.(2020). The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds. Journal of Biogeography.47:1612-1625. DOI: 10.5061/dryad.8931zcrmt.
[26] B Chattopadhyay, KM Garg, IH Mendenhall, FE Rheindt. et al.(2019). Historic DNA reveals Anthropocene threat to a tropical urban fruit bat. Current Biology.29:R1299-R1300. DOI: 10.5061/dryad.8931zcrmt.
[27] P Vachaspati, T Warnow. (2015). ASTRID: accurate species TRees from internode distances. BMC Genomics.16. DOI: 10.5061/dryad.8931zcrmt.
[28] G Oatley, G Voelker, TM Crowe, RCK Bowie. et al.(2012). A multi-locus phylogeny reveals a complex pattern of diversification related to climate and habitat heterogeneity in southern African white-eyes. Molecular Phylogenetics and Evolution.64:633-644. DOI: 10.5061/dryad.8931zcrmt.
[29] PM Oliver, H Heiniger, AF Hugall, L Joseph. et al.(2020). Oligocene divergence of frogmouth birds (Podargidae) across Wallace's Line. Biology Letters.16. DOI: 10.5061/dryad.8931zcrmt.
[30] T Cai, A Cibois, P Alström, RG Moyle. et al.(2019). Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes). Molecular Phylogenetics and Evolution.130:346-356. DOI: 10.5061/dryad.8931zcrmt.
[31] CH Oliveros, DJ Field, DT Ksepka, FK Barker. et al.(2019). Earth history and the passerine superradiation. PNAS.116:7916-7925. DOI: 10.5061/dryad.8931zcrmt.
[32] JEL Templeton, PM Brotherton, B Llamas, J Soubrier. et al.(2013). DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investigative Genetics.4. DOI: 10.5061/dryad.8931zcrmt.
[33] GG Fortes, JLA Paijmans. (2015). Whole Genome Amplification:179-195. DOI: 10.5061/dryad.8931zcrmt.
[34] DJX Tan, B Chattopadhyay, KM Garg, E Cros. et al.(2018). Novel genome and genome-wide SNPs reveal early fragmentation effects in an edge-tolerant songbird population across an urbanized tropical metropolis. Scientific Reports.8:1-12. DOI: 10.5061/dryad.8931zcrmt.
[35] HR Lerner, M Meyer, HF James, M Hofreiter. et al.(2011). Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of hawaiian honeycreepers. Current Biology.21:1838-1844. DOI: 10.5061/dryad.8931zcrmt.
[36] SV Edwards, SB Kingan, JD Calkins, CN Balakrishnan. et al.(2005). Speciation in birds: genes, geography, and sexual selection. PNAS.102:6550-6557. DOI: 10.5061/dryad.8931zcrmt.
[37] B Langmead, SL Salzberg. (2012). Fast gapped-read alignment with bowtie 2. Nature Methods.9:357-359. DOI: 10.5061/dryad.8931zcrmt.
[38] A Stamatakis. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics.30:1312-1313. DOI: 10.5061/dryad.8931zcrmt.
[39] S Song, L Liu, SV Edwards, S Wu. et al.(2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. PNAS.109:14942-14947. DOI: 10.5061/dryad.8931zcrmt.
[40] S Lamichhaney, J Berglund, MS Almén, K Maqbool. et al.(2015). Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature.518:371-375. DOI: 10.5061/dryad.8931zcrmt.
[41] SJ Moss, MEJ Wilson. (1998). Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. Biogeography and Geological Evolution of SE Asia.133. DOI: 10.5061/dryad.8931zcrmt.
[42] NSR Ng, PR Wilton, DM Prawiradilaga, YC Tay. et al.(2017). The effects of pleistocene climate change on biotic differentiation in a montane songbird clade from wallacea. Molecular Phylogenetics and Evolution.114:353-366. DOI: 10.5061/dryad.8931zcrmt.
[43] RG Moyle, CE Filardi, CE Smith, J Diamond. et al.(2009). Explosive pleistocene diversification and hemispheric expansion of a "great speciator". PNAS.106:1863-1868. DOI: 10.5061/dryad.8931zcrmt.
[44] AMS Nugraha, R Hall. (2018). Late cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology.490:191-209. DOI: 10.5061/dryad.8931zcrmt.
[45] A Smit, R Hubley, P Green. (2015). RepeatMasker 4.0. DOI: 10.5061/dryad.8931zcrmt.
[46] SV Edwards, S Potter, CJ Schmitt, JG Bragg. et al.(2016). Reticulation, divergence, and the phylogeography-phylogenetics continuum. PNAS.113:8025-8032. DOI: 10.5061/dryad.8931zcrmt.
[47] SV Edwards, L Liu, DK Pearl. (2007). High-resolution species trees without concatenation. PNAS.104:5936-5941. DOI: 10.5061/dryad.8931zcrmt.
[48] P Baveja, KM Garg, B Chattopadhyay, KR Sadanandan. et al.(2020). Using historical genome‐wide DNA to unravel the confused taxonomy in a songbird lineage that is extinct in the wild. Evolutionary Applications.4:1-12. DOI: 10.5061/dryad.8931zcrmt.
[49] A Bankevich, S Nurk, D Antipov, AA Gurevich. et al.(2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology.19:455-477. DOI: 10.5061/dryad.8931zcrmt.
[50] SM Degnan, C Moritz. (1992). Phylogeography of mitochondrial DNA in two species of White-Eyes in Australia. The Auk.109:800-811. DOI: 10.5061/dryad.8931zcrmt.
[51] H Ashari, DM Prawiradilaga, JA Eaton, S Suparno. et al.(2019). New records and range extensions of birds from Timor, Alor and Rote. TREUBIA.45:47-64. DOI: 10.5061/dryad.8931zcrmt.
[52] J del Hoyo, NJ Collar, DA Christie, A Elliott. et al.(2016). Illustrated Checklist of the Birds of the World, Volume 2: Passerines. DOI: 10.5061/dryad.8931zcrmt.
[53] JM Diamond, ME Gilpin, E Mayr. (1976). Species-distance relation for birds of the solomon archipelago, and the paradox of the great speciators. PNAS.73:2160-2164. DOI: 10.5061/dryad.8931zcrmt.
[54] SB Shakya, T Haryoko, RC Burner, DM Prawiradilaga. et al.(2018). Preliminary assessment of community composition and phylogeographic relationships of the birds of the Meratus Mountains, south-east borneo, Indonesia. Bulletin of the British Ornithologists' Club.138:45-66. DOI: 10.5061/dryad.8931zcrmt.
[55] JA Eaton, SL Mitchell, CNG Bocos, FE Rheindt. et al.(2016). A short survey of the meratus mountains, South Kalimantan Province, Indonesia: two undescribed avian species discovered. BirdingASIA.26:107-113. DOI: 10.5061/dryad.8931zcrmt.
[56] A-C Sarr, L Husson, P Sepulchre, A-M Pastier. et al.(2019). Subsiding sundaland. Geology.47:119-122. DOI: 10.5061/dryad.8931zcrmt.
[57] L Liu, L Yu, DK Pearl, SV Edwards. et al.(2009). Estimating species phylogenies using coalescence times among sequences. Systematic Biology.58:468-477. DOI: 10.5061/dryad.8931zcrmt.
[58] BTM Lim, KR Sadanandan, C Dingle, YY Leung. et al.(2019). Molecular evidence suggests radical revision of species limits in the great speciator white-eye genus. Journal of Ornithology.160:1-16. DOI: 10.5061/dryad.8931zcrmt.
[59] E Linck, S Schaack, JP Dumbacher. (2016). Genetic differentiation within a widespread "supertramp" taxon: Molecular phylogenetics of the Louisiade White-eye (). Molecular Phylogenetics and Evolution.94:113-121. DOI: 10.5061/dryad.8931zcrmt.
[60] PD Round, S Manawattana, J Khudamrongsawat, S Thunhikorn. et al.(2017). Disentangling avian diversity: South-East Asian mainland Oriental white-eye constitutes two distinct lineages. Forktail.33:103-115. DOI: 10.5061/dryad.8931zcrmt.
[61] T Leroy, Y Anselmetti, M-K Tilak, S Bérard. et al.(2019). A bird’s white-eye view on neosex chromosome evolution. bioRxiv. DOI: 10.5061/dryad.8931zcrmt.
[62] K Bi, D Vanderpool, S Singhal, T Linderoth. et al.(2012). Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics.13. DOI: 10.5061/dryad.8931zcrmt.
[63] RW Bryson, BC Faircloth, WLE Tsai, JE McCormack. et al.(2016). Target enrichment of thousands of ultraconserved elements sheds new light on early relationships within New World sparrows (Aves: Passerellidae). The Auk.133:451-458. DOI: 10.5061/dryad.8931zcrmt.
[64] E Cros, B Chattopadhyay, KM Garg, NSR Ng. et al.(2020). Quaternary land bridges have not been universal conduits of gene flow. Molecular Ecology.29:2692-2706. DOI: 10.5061/dryad.8931zcrmt.
[65] AM Bolger, M Lohse, B Usadel. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics.30:2114-2120. DOI: 10.5061/dryad.8931zcrmt.
[66] M de Bruyn, B Stelbrink, RJ Morley, R Hall. et al.(2014). Borneo and Indochina are major evolutionary hotspots for southeast asian biodiversity. Systematic Biology.63:879-901. DOI: 10.5061/dryad.8931zcrmt.
[67] AR Quinlan, IM Hall. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics.26:841-842. DOI: 10.5061/dryad.8931zcrmt.
[68] DP O’Connell, DJ Kelly, N Lawless, K O’Brien. et al.(2019). A sympatric pair of undescribed white-eye species (Aves: zosteropidae: ) with different origins. Zoological Journal of the Linnean Society.186:701-724. DOI: 10.5061/dryad.8931zcrmt.
[69] SM Degnan. (1993). The perils of single gene trees — mitochondrial versus single-copy nuclear DNA variation in white-eyes (Aves: Zosteropidae). Molecular Ecology.2:219-225. DOI: 10.5061/dryad.8931zcrmt.
[70] H Li. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. DOI: 10.5061/dryad.8931zcrmt.
[71] N Patterson, P Moorjani, Y Luo, S Mallick. et al.(2012). Ancient admixture in human history. Genetics.192:1065-1093. DOI: 10.5061/dryad.8931zcrmt.
[72] H Jónsson, A Ginolhac, M Schubert, PLF Johnson. et al.(2013). mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics.29:1682-1684. DOI: 10.5061/dryad.8931zcrmt.
[73] B Slikas, IB Jones, SR Derrickson, RC Fleischer. et al.(2000). Phylogenetic relationships of micronesian White-Eyes based on mitochondrial sequence data. The Auk.117:355-365. DOI: 10.5061/dryad.8931zcrmt.
[74] C Li, JJ Riethoven, GJ Naylor. (2012). EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies. Molecular Ecology Resources.12:967-971. DOI: 10.5061/dryad.8931zcrmt.
[75] K Katoh, DM Standley. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution.30:772-780. DOI: 10.5061/dryad.8931zcrmt.
[76] H Li, B Handsaker, A Wysoker, T Fennell. et al.(2009). The sequence alignment/Map format and SAMtools. Bioinformatics.25:2078-2079. DOI: 10.5061/dryad.8931zcrmt.
[77] G Slater, E Birney. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics.6. DOI: 10.5061/dryad.8931zcrmt.
[78] TS Korneliussen, A Albrechtsen, R Nielsen. (2014). ANGSD: analysis of next generation sequencing data. BMC Bioinformatics.15. DOI: 10.5061/dryad.8931zcrmt.
[79] S Singhal. (2013). transcriptomic analyses for non-model organisms: an evaluation of methods across a multi-species data set. Molecular Ecology Resources.13:403-416. DOI: 10.5061/dryad.8931zcrmt.
[80] DJ Lohman, M de Bruyn, T Page, K von Rintelen. et al.(2011). Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics.42:205-226. DOI: 10.5061/dryad.8931zcrmt.
[81] MG Johnson, EM Gardner, Y Liu, R Medina. et al.(2016). HybPiper: extracting coding sequence and introns for phylogenetics from High-Throughput sequencing reads using target enrichment. Applications in Plant Sciences.4. DOI: 10.5061/dryad.8931zcrmt.
[82] RH MacArthur, EO Wilson. (2001). The Theory of Island Biogeography. DOI: 10.5061/dryad.8931zcrmt.
[83] ND Jackson, BC Carstens, AE Morales, BC O'Meara. et al.(2017a). Species delimitation with gene flow. Systematic Biology.66:799-812. DOI: 10.5061/dryad.8931zcrmt.
[84] L Cornetti, LM Valente, LT Dunning, X Quan. et al.(2015). The genome of the "Great Speciator" Provides Insights into Bird Diversification. Genome Biology and Evolution.7:2680-2691. DOI: 10.5061/dryad.8931zcrmt.
[85] SC Cox, RP Prys-Jones, JC Habel, BA Amakobe. et al.(2014). Niche divergence promotes rapid diversification of East African sky island white-eyes (Aves: Zosteropidae). Molecular Ecology.23:4103-4118. DOI: 10.5061/dryad.8931zcrmt.
[86] SM Clegg, SM Degnan, C Moritz, A Estoup. et al.(2002). Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution.56:2090-2099. DOI: 10.5061/dryad.8931zcrmt.
[87] W Jetz, GH Thomas, JB Joy, K Hartmann. et al.(2012). The global diversity of birds in space and time. Nature.491:444-448. DOI: 10.5061/dryad.8931zcrmt.
[88] T Magoč, SL Salzberg. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics.27:2957-2963. DOI: 10.5061/dryad.8931zcrmt.
[89] ND Jackson, AE Morales, BC Carstens, BC O'Meara. et al.(2017b). PHRAPL: phylogeographic inference using approximate likelihoods. Systematic Biology.66:1045-1053. DOI: 10.5061/dryad.8931zcrmt.
[90] JD Manthey, CH Oliveros, MJ Andersen, CE Filardi. et al.(2020). Gene flow and rapid differentiation characterize a rapid insular radiation in the southwest Pacific (Aves: ). Evolution.74:1788-1803. DOI: 10.5061/dryad.8931zcrmt.
[91] L Liu, L Yu, SV Edwards. (2010). A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology.10. DOI: 10.5061/dryad.8931zcrmt.
[92] N Á.S, L Joseph. (2013). Comparative phylogeography of Australo-Papuan mangrove-restricted and mangrove-associated avifaunas. Biological Journal of the Linnean Society.109:574-598. DOI: 10.5061/dryad.8931zcrmt.
[93] FE Rheindt, SV Edwards. (2011). Genetic Introgression: An Integral but neglected component of speciation in birds. The Auk.128:620-632. DOI: 10.5061/dryad.8931zcrmt.
[94] SF Altschul, W Gish, W Miller, EW Myers. et al.(1990). Basic local alignment search tool. Journal of Molecular Biology.215:403-410. DOI: 10.5061/dryad.8931zcrmt.
[95] M Husemann, S Sturm, M Curto, H Meimberg. et al.(2016). Four new mitochondrial genomes of the genus (aves: passeriformes: zosteropidae) from East Africa with a phylogenetic evaluation of the group. Mitochondrial DNA Part B.1:544-548. DOI: 10.5061/dryad.8931zcrmt.
[96] L Liu, Z Xi, CC Davis. (2015). Coalescent methods are robust to the simultaneous effects of long branches and incomplete lineage sorting. Molecular Biology and Evolution.32:791-805. DOI: 10.5061/dryad.8931zcrmt.
[97] M Irestedt, P-H Fabre, H Batalha-Filho, KA Jønsson. et al.(2013). The spatio-temporal colonization and diversification across the Indo-Pacific by a ‘great speciator’ (Aves, ). Proceedings of the Royal Society B: Biological Sciences.280. DOI: 10.5061/dryad.8931zcrmt.
[98] . (2019). . DOI: 10.5061/dryad.8931zcrmt.
[99] J Huerta-Cepas, F Serra, P Bork. (2016). ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution.33:1635-1638. DOI: 10.5061/dryad.8931zcrmt.
[100] FE Rheindt, DM Prawiradilaga, H Ashari, Suparno. et al.(2020). A lost world in Wallacea: description of a montane archipelagic avifauna. Science.367:167-170. DOI: 10.5061/dryad.8931zcrmt.
[101] SB Reilly, AL Stubbs, BR Karin, K Bi. et al.(2019). Leap‐frog dispersal and mitochondrial introgression: Phylogenomics and biogeography of fanged frogs in the Lesser Sundas Archipelago of Wallacea. Journal of Biogeography.46:757-769. DOI: 10.5061/dryad.8931zcrmt.
[102] L Liu, C Anderson, D Pearl, SV Edwards. et al.(2019). Evolutionary Genomics: Statistical and Computational Methods:211-239. DOI: 10.5061/dryad.8931zcrmt.