首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-12-03
Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci
Evolutionary Biology
Fan Han 1 Minal Jamsandekar 2 Mats E Pettersson 1 Leyi Su 1 Angela P Fuentes-Pardo 1 Brian W Davis 2 Dorte Bekkevold 3 Florian Berg 4 , 5 Michele Casini 6 , 7 Geir Dahle 5 Edward D Farrell 8 Arild Folkvord 4 , 5 Leif Andersson 1 , 2 , 9
Show affiliations
Received 2020-07-15, accepted for publication 2020-12-03, Published 2020-12-03

Atlantic herring is widespread in North Atlantic and adjacent waters and is one of the most abundant vertebrates on earth. This species is well suited to explore genetic adaptation due to minute genetic differentiation at selectively neutral loci. Here, we report hundreds of loci underlying ecological adaptation to different geographic areas and spawning conditions. Four of these represent megabase inversions confirmed by long read sequencing. The genetic architecture underlying ecological adaptation in herring deviates from expectation under a classical infinitesimal model for complex traits because of large shifts in allele frequencies at hundreds of loci under selection.


Other;ecology;genotype;inversion;evolution;genetic adaptation;Atlantic herring


© 2020, Han et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Fan Han,Minal Jamsandekar,Mats E Pettersson,Leyi Su,Angela P Fuentes-Pardo,Brian W Davis,Dorte Bekkevold,Florian Berg,Michele Casini,Geir Dahle,Edward D Farrell,Arild Folkvord,Leif Andersson. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. eLife ,Vol.9(2020)



[1] LA Manzon. (2002). The role of prolactin in fish osmoregulation: a review. General and Comparative Endocrinology.125:291-310. DOI: 10.5061/dryad.pnvx0k6kr.
[2] SA Tischkau. (2020). Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. European Journal of Neuroscience.51:379-395. DOI: 10.5061/dryad.pnvx0k6kr.
[3] B Walsh, M Lynch. (2018). Evolution and Selection of Quantitative Traits. DOI: 10.5061/dryad.pnvx0k6kr.
[4] FJ Sedlazeck, P Rescheneder, M Smolka, H Fang. et al.(2018). Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods.15:461-468. DOI: 10.5061/dryad.pnvx0k6kr.
[5] S Beleza, NA Johnson, SI Candille, DM Absher. et al.(2013). Genetic architecture of skin and eye color in an African-European admixed population. PLOS Genetics.9. DOI: 10.5061/dryad.pnvx0k6kr.
[6] D Bekkevold, LAW Clausen, S Mariani, C André. et al.(2007). Divergent origins of sympatric herring population components determined using genetic mixture analysis. Marine Ecology Progress Series.337:187-196. DOI: 10.5061/dryad.pnvx0k6kr.
[7] P Danecek, A Auton, G Abecasis, CA Albers. et al.(2011). The variant call format and VCFtools. Bioinformatics.27:2156-2158. DOI: 10.5061/dryad.pnvx0k6kr.
[8] Z Min, L Xiaomeng, L Zheng, D Yangge. et al.(2019). Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death & Disease.10. DOI: 10.5061/dryad.pnvx0k6kr.
[9] NH Barton, AM Etheridge, A Véber. (2017). The infinitesimal model: definition, derivation, and implications. Theoretical Population Biology.118:50-73. DOI: 10.5061/dryad.pnvx0k6kr.
[10] AL Delcher, A Phillippy, J Carlton, SL Salzberg. et al.(2002). Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Research.30:2478-2483. DOI: 10.5061/dryad.pnvx0k6kr.
[11] DM Maddox, GB Collin, A Ikeda, CH Pratt. et al.(2015). A Mutation in Causes Early Retinal Defects in Photoreceptors, Secondary Neurons, and Müller Glia. Investigative Opthalmology & Visual Science.56:3776-3787. DOI: 10.5061/dryad.pnvx0k6kr.
[12] MT Limborg, SJ Helyar, M De Bruyn, MI Taylor. et al.(2012). Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (). Molecular Ecology.21:3686-3703. DOI: 10.5061/dryad.pnvx0k6kr.
[13] Y Nakane, T Yoshimura. (2019). Photoperiodic regulation of reproduction in vertebrates. Annual Review of Animal Biosciences.7:173-194. DOI: 10.5061/dryad.pnvx0k6kr.
[14] LAW Clausen, D Bekkevold, EMC Hatfield, H Mosegaard. et al.(2007). Application and validation of otolith microstructure as a stock identification method in mixed Atlantic herring () stocks in the north sea and western baltic. ICES Journal of Marine Science.64:377-385. DOI: 10.5061/dryad.pnvx0k6kr.
[15] Y Nakane, K Ikegami, M Iigo, H Ono. et al.(2013). The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nature Communications.4. DOI: 10.5061/dryad.pnvx0k6kr.
[16] JM Cope, AE Punt. (2011). Reconciling stock assessment and management scales under conditions of spatially varying catch histories. Fisheries Research.107:22-38. DOI: 10.5061/dryad.pnvx0k6kr.
[17] ME Goddard, KE Kemper, IM MacLeod, AJ Chamberlain. et al.(2016). Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proceedings of the Royal Society B: Biological Sciences.283. DOI: 10.5061/dryad.pnvx0k6kr.
[18] J Hill, ED Enbody, ME Pettersson, CG Sprehn. et al.(2019). Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin. PNAS.116:18473-18478. DOI: 10.5061/dryad.pnvx0k6kr.
[19] NT Hintzen, B Roel, D Benden, M Clarke. et al.(2015). Managing a complex population structure: exploring the importance of information from fisheries-independent sources. ICES Journal of Marine Science.72:528-542. DOI: 10.5061/dryad.pnvx0k6kr.
[20] I McQuinn. (1997). Metapopulations and the Atlantic herring. Reviews in Fish Biology and Fisheries.7:297-329. DOI: 10.5061/dryad.pnvx0k6kr.
[21] J Zeng, R de Vlaming, Y Wu, MR Robinson. et al.(2018). Signatures of negative selection in the genetic architecture of human complex traits. Nature Genetics.50:746-753. DOI: 10.5061/dryad.pnvx0k6kr.
[22] P Melamed, D Savulescu, S Lim, A Wijeweera. et al.(2012). Gonadotrophin-releasing hormone signalling downstream of calmodulin. Journal of Neuroendocrinology.24:1463-1475. DOI: 10.5061/dryad.pnvx0k6kr.
[23] L Yengo, J Sidorenko, KE Kemper, Z Zheng. et al.(2018). Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of european ancestry. Human Molecular Genetics.27:3641-3649. DOI: 10.5061/dryad.pnvx0k6kr.
[24] SR Browning, BL Browning. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics.81:1084-1097. DOI: 10.5061/dryad.pnvx0k6kr.
[25] M Wellenreuther, L Bernatchez. (2018). Eco-Evolutionary genomics of chromosomal inversions. Trends in Ecology & Evolution.33:427-440. DOI: 10.5061/dryad.pnvx0k6kr.
[26] AO Bergland, EL Behrman, KR O'Brien, PS Schmidt. et al.(2014). Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in. PLOS Genetics.10. DOI: 10.5061/dryad.pnvx0k6kr.
[27] F Eggers, A Slotte, LA Libungan, A Johannessen. et al.(2014). Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLOS ONE.9. DOI: 10.5061/dryad.pnvx0k6kr.
[28] EM Oziolor, NM Reid, S Yair, KM Lee. et al.(2019). Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science.364:455-457. DOI: 10.5061/dryad.pnvx0k6kr.
[29] A Martinez Barrio, S Lamichhaney, G Fan, N Rafati. et al.(2016). The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife.5. DOI: 10.5061/dryad.pnvx0k6kr.
[30] M Nattestad, C-S Chin, MC Schatz. (2016). Ribbon: visualizing complex genome alignments and structural variation. bioRxiv. DOI: 10.5061/dryad.pnvx0k6kr.
[31] A McKenna, M Hanna, E Banks, A Sivachenko. et al.(2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research.20:1297-1303. DOI: 10.5061/dryad.pnvx0k6kr.
[32] F Berg, HD Østgaard, A Slotte, L Andersson. et al.(2020). A combination of genetic and phenotypic characterization of spring- and autumn-spawning herring suggests gene flow between populations. ICES Journal of Marine Science : Journal Du Conseil.7. DOI: 10.5061/dryad.pnvx0k6kr.
[33] . (2019). Herring () in subareas 1, 2, and 5, and in divisions 4.a and 14.a, norwegian spring-spawning herring (the northeast Atlantic and the arctic ocean). :1-24. DOI: 10.5061/dryad.pnvx0k6kr.
[34] O Dragesund, A Johannessen, U Øyvind. (1997). Varlation in migration and abundance of Norwegian spring spawning herring ( L.). Sarsia.82:97-105. DOI: 10.5061/dryad.pnvx0k6kr.
[35] ME Pettersson, CM Rochus, F Han, J Chen. et al.(2019). A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection. Genome Research.29:1919-1928. DOI: 10.5061/dryad.pnvx0k6kr.
[36] C Deveau, X Jiao, S Suzuki, A Krishnakumar. et al.(2019). Thyroid hormone receptor beta mutations alter photoreceptor development and function in (zebrafish). bioRxiv. DOI: 10.5061/dryad.pnvx0k6kr.
[37] IA Johnston, VLA Vieira, GK Temple. (2001). Functional consequences and population differences in the developmental plasticity of muscle to temperature in Atlantic herring. Marine Ecology Progress Series.213:285-300. DOI: 10.5061/dryad.pnvx0k6kr.
[38] R Kofler, RV Pandey, C Schlotterer. (2011). PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics.27:3435-3436. DOI: 10.5061/dryad.pnvx0k6kr.
[39] LC Larsson, L Laikre, C André, TG Dahlgren. et al.(2010). Temporally stable genetic structure of heavily exploited Atlantic herring () in swedish waters. Heredity.104:40-51. DOI: 10.5061/dryad.pnvx0k6kr.
[40] AM Ferrara, K Onigata, O Ercan, H Woodhead. et al.(2012). Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. The Journal of Clinical Endocrinology & Metabolism.97:1328-1336. DOI: 10.5061/dryad.pnvx0k6kr.
[41] S Lamichhaney, AP Fuentes-Pardo, N Rafati, N Ryman. et al.(2017). Parallel adaptive evolution of geographically distant herring populations on both sides of the north Atlantic ocean. PNAS.114:E3452-E3461. DOI: 10.5061/dryad.pnvx0k6kr.
[42] S Lamichhaney, G Fan, F Widemo, U Gunnarsson. et al.(2016). Structural genomic changes underlie alternative reproductive strategies in the ruff (). Nature Genetics.48:84-88. DOI: 10.5061/dryad.pnvx0k6kr.
[43] . (2019). Github. DOI: 10.5061/dryad.pnvx0k6kr.
[44] S Lamichhaney, A Martinez Barrio, N Rafati, G Sundström. et al.(2012). Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. PNAS.109:19345-19350. DOI: 10.5061/dryad.pnvx0k6kr.
[45] S Purcell, B Neale, K Todd-Brown, L Thomas. et al.(2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics.81:559-575. DOI: 10.5061/dryad.pnvx0k6kr.
[46] A Rambaut. (2014). . DOI: 10.5061/dryad.pnvx0k6kr.
[47] JT Robinson, H Thorvaldsdóttir, W Winckler, M Guttman. et al.(2011). Integrative genomics viewer. Nature Biotechnology.29:24-26. DOI: 10.5061/dryad.pnvx0k6kr.
[48] C Feng, M Pettersson, S Lamichhaney, CJ Rubin. et al.(2017). Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. eLife.6. DOI: 10.5061/dryad.pnvx0k6kr.
[49] J Felsenstein. (1995). PHYLIP (Phylogeny inference package), 3.572 (PowerPC) Cladistics. The International Journal of the Willi Hennig Society.5:164-166. DOI: 10.5061/dryad.pnvx0k6kr.
[50] H Li. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics.34:3094-3100. DOI: 10.5061/dryad.pnvx0k6kr.
[51] H Li. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. DOI: 10.5061/dryad.pnvx0k6kr.
[52] AP Fuentes-Pardo, C Bourne, R Singh, K Emond. et al.(2019). Adaptation to seasonal reproduction and thermal minima-related factors drives fine-scale divergence despite gene flow in Atlantic herring populations. bioRxiv. DOI: 10.5061/dryad.pnvx0k6kr.
[53] N Ryman, U Lagercrantz, L Andersson, R Chakraborty. et al.(1984). Lack of correspondence between genetic and morphologic variability patterns in Atlantic herring (). Heredity.53:687-704. DOI: 10.5061/dryad.pnvx0k6kr.
[54] L Andersson, N Ryman, R Rosenberg, G Ståhl. et al.(1981). Genetic variability in Atlantic herring (): description of protein loci and population data. Hereditas.95:69-78. DOI: 10.5061/dryad.pnvx0k6kr.
[55] H Li, B Handsaker, A Wysoker, T Fennell. et al.(2009). The sequence alignment/Map format and SAMtools. Bioinformatics.25:2078-2079. DOI: 10.5061/dryad.pnvx0k6kr.
[56] EM Santos, VL Workman, GC Paull, AL Filby. et al.(2007). Molecular basis of sex and reproductive status in breeding zebrafish. Physiological Genomics.30:111-122. DOI: 10.5061/dryad.pnvx0k6kr.
[57] T Andrén, S Björck, E Andrén, D Conley. et al.(2011). The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES):75-97. DOI: 10.5061/dryad.pnvx0k6kr.
[58] KW Schulte, E Green, A Wilz, M Platten. et al.(2017). Structural basis for aryl hydrocarbon Receptor-Mediated gene activation. Structure.25:1025-1033. DOI: 10.5061/dryad.pnvx0k6kr.
[59] . (2013). The State of World Fisheries and Aquaculture, 2012. DOI: 10.5061/dryad.pnvx0k6kr.
[60] RA Fisher. (1919). XV.—The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh.52:399-433. DOI: 10.5061/dryad.pnvx0k6kr.
[61] D Ferreira-Martins, J Coimbra, C Antunes, JM Wilson. et al.(2016). Effects of salinity on upstream-migrating, spawning Sea Lamprey,. Conservation Physiology.4. DOI: 10.5061/dryad.pnvx0k6kr.
浏览 33次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次