首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 23 ,2020-12-09
Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller 1 Vlassis A. Karydis 2 Sara Bacer 3 Georgiy L. Stenchikov 4 Jos Lelieveld 1 , 5
Show affiliations
DOI:10.5194/acp-20-15285-2020
PDF
摘要

The interactions between aeolian dust and anthropogenic air pollution, notably chemical ageing of mineral dust and coagulation of dust and pollution particles, modify the atmospheric aerosol composition and burden. Since the aerosol particles can act as cloud condensation nuclei, this affects the radiative transfer not only directly via aerosol–radiation interactions, but also indirectly through cloud adjustments. We study both radiative effects using the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC) which combines the Modular Earth Submodel System (MESSy) with the European Centre/Hamburg (ECHAM) climate model. Our simulations show that dust–pollution–cloud interactions reduce the condensed water path and hence the reflection of solar radiation. The associated climate warming outweighs the cooling that the dust–pollution interactions exert through the direct radiative effect. In total, this results in a net warming by dust–pollution interactions which moderates the negative global anthropogenic aerosol forcing at the top of the atmosphere by (0.2 ± 0.1) W m−2.

授权许可

Copyright: © 2020 Klaus Klingmüller et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Klaus Klingmüller,Vlassis A. Karydis,Sara Bacer,Georgiy L. Stenchikov,Jos Lelieveld. Weaker cooling by aerosols due to dust–pollution interactions. Atmospheric Chemistry and Physics ,Vol.20, Issue 23(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N., and Lelieveld, J.: ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere, Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014, 2014 a
[2] Nordeng, T.-E.: Extended versions of the convective parametrization scheme atECMWF and their impact on the mean and transient activity of the model in the tropics, ECMWF, Reading, UK, https://doi.org/10.21957/e34xwhysw, 1994. a
[3] Levine, J.: 5.5-Biomass Burning: The Cycling of Gases and Particulates fromthe Biosphere to the Atmosphere, in: Treatise on Geochemistry (SecondEdition), edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, UK, 139–150, https://doi.org/10.1016/B978-0-08-095975-7.00405-8, 2014. a
[4] Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols andClouds: The Software Package OPAC, B. Am. Meteorol.Soc., 79, 831–844, [5] 3C0831:OPOAAC
[6] 3E2.0.CO;2">https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2,1998. a
[7] Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust inthe atmosphere, Sci. Adv., 6, eaaz9507, https://doi.org/10.1126/sciadv.aaz9507,2020. a
[8] Tost, H., Jöckel, P., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling, Atmos. Chem. Phys., 6, 565–574, https://doi.org/10.5194/acp-6-565-2006, 2006a. a
[9] Abdelkader, M., Metzger, S., Steil, B., Klingmüller, K., Tost, H., Pozzer, A., Stenchikov, G., Barrie, L., and Lelieveld, J.: Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes, Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, 2017. a
[10] Tost, H., Jöckel, P., and Lelieveld, J.: Influence of different convection parameterisations in a GCM, Atmos. Chem. Phys., 6, 5475–5493, https://doi.org/10.5194/acp-6-5475-2006, 2006b. a
[11] Kerkweg, A., Sander, R., Tost, H., and Jöckel, P.: Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 3603–3609, https://doi.org/10.5194/acp-6-3603-2006, 2006b. a
[12] Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., and Lelieveld, J.: Dust–air pollution dynamics over the eastern Mediterranean, Atmos. Chem. Phys., 15, 9173–9189, https://doi.org/10.5194/acp-15-9173-2015, 2015. a
[13] Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectraldependence of light absorption by aerosols is affected by organic carbon,J. Geophys. Res.-Atmos., 109, 21208,https://doi.org/10.1029/2004JD004999, 2004. a
[14] Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632, https://doi.org/10.5194/acp-6-4617-2006, 2006a. a
[15] Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3-Cl-H2Oaerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. a
[16] Lohmann, U. and Kärcher, B.: First interactive simulations of cirrus cloudsformed by homogeneous freezing in the ECHAM general circulation model,J. Geophys. Res.-Atmos., 107, D104105,https://doi.org/10.1029/2001JD000767, 2002. a