首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 23 ,2020-12-07
North African mineral dust sources: new insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters
Sophie Vandenbussche 1 Sieglinde Callewaert 1 Kerstin Schepanski 2 Martine De Mazière 1
Show affiliations
DOI:10.5194/acp-20-15127-2020
PDF
摘要

Mineral dust aerosol is a key player in the climate system. Determining dust sources and the spatio-temporal variability of dust emission fluxes is essential for estimating the impact of dust on the atmospheric radiation budget, cloud and precipitation formation processes, the bio-productivity and, ultimately, the carbon cycle. Although much effort has been put into determining dust sources from satellite observations, geo-locating active dust sources is still challenging and uncertainties in space and time are evident. One major source of uncertainty is the lack of clear differentiation between near-source dust aerosol and transported dust aerosol. In order to reduce this uncertainty, we use 3D information on the distribution of dust aerosol suspended in the atmosphere calculated from spectral measurements obtained by the Infrared Atmospheric Sounding Interferometer (IASI) by using the Mineral Aerosols Profiling from Infrared Radiance (MAPIR) algorithm. In addition to standard dust products from satellite observations, which provide 2D information on the horizontal distribution of dust, MAPIR allows for the retrieval of additional information on the vertical distribution of dust plumes. This ultimately enables us to separate between near-source and transported dust plumes. Combined with information on near-surface wind speed and surface properties, low-altitude dust plumes can be assigned to dust emission events and low-altitude transport regimes can be excluded. Consequently, this technique will reduce the uncertainty in automatically geo-locating active dust sources. The findings of our study illustrate the spatio-temporal distribution of North African dust sources based on 9 years of data, allowing for the observation of a full seasonal cycle of dust emissions, differentiating morning and afternoon/evening emissions and providing a first glance at long-term changes. In addition, we compare the results of this new method to the results from Schepanski et al. (2012), who manually identified dust sources from Spinning Enhanced Visible and InfraRed Imager (SEVIRI) red–green–blue (RGB) images. The comparison illustrates that each method has its strengths and weaknesses that must be taken into account when using the results. This study is of particular importance for understanding future environmental changes due to a changing climate.

授权许可

Copyright: © 2020 Sophie Vandenbussche et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Sophie Vandenbussche,Sieglinde Callewaert,Kerstin Schepanski,Martine De Mazière. North African mineral dust sources: new insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters. Atmospheric Chemistry and Physics ,Vol.20, Issue 23(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Kim, H. and Choi, M.: Impact of soil moisture on dust outbreaks in East Asia:Using satellite and assimilation data, Geophys. Res. Lett., 42,2789–2796, https://doi.org/10.1002/2015GL063325,2015. a
[2] Parajuli, S. P. and Yang, Z.-L.: Understanding dust emission in the Bodéléregion by extracting locally mobilized dust aerosols from satellite AerosolOptical Depth data using principal component analysis, Aeolian Res., 24,105–113, https://doi.org/10.1016/j.aeolia.2017.01.001,2017. a, b
[3] Klose, M., Shao, Y., Karremann, M. K., and Fink, A. H.: Sahel dust zone andsynoptic background, Geophys. Res. Lett., 37, L09802,https://doi.org/10.1029/2010GL042816,2010. a
[4] Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi,M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D.,Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C.,van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESACCI Soil Moisture for improved Earth system understanding: State-of-the artand future directions, Remote Sens. Environ.,https://doi.org/10.1016/j.rse.2017.07.001, 2017. a
[5] Knippertz, P.: Mineral Dust – A key player in the Earth system, chap. 6:Meteorological aspects of dust storms, ISBN 978-94-017-8977-6, 121–147, Springer Netherlands, 2014. a, b, c
[6] Bergametti, G., Marticoréna, B., Rajot, J. L., Chatenet, B., Féron, A.,Gaimoz, C., Siour, G., Coulibaly, M., Koné, I., Maman, A., and Zakou, A.:Dust uplift potential in the Central Sahel: an analysis based on 10 years ofmeteorological measurements at high temporal resolution, J. Geophys. Res.-Atmos., 112, 1–16, https://doi.org/10.1002/2017JD027471, 2017. a
[7] Evan, A. T., Fiedler, S., Zhao, C., Menut, L., Schepanski, K., Flamant, C., andDoherty, O.: Derivation of an observation-based map of North African dustemission, Aeolian Res., 16, 153–162,https://doi.org/10.1016/j.aeolia.2015.01.001, 2015. a
[8] Banks, J. R., Hünerbein, A., Heinold, B., Brindley, H. E., Deneke, H., and Schepanski, K.: The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions, Atmos. Chem. Phys., 19, 6893–6911, https://doi.org/10.5194/acp-19-6893-2019, 2019. a
[9] Banks, J. R., Brindley, H. E., Hobby, M., and Marsham, J. H.: The daytime cyclein dust aerosol direct radiative effects observed in the central Saharaduring the Fennec campaign in June 2011, J. Geophys. Res.-Atmos., 119, 13861–13876, https://doi.org/10.1002/2014JD022077, 2014. a
[10] Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., and Tegen, I.:Climatology of nocturnal low-level jets over North Africa and implicationsfor modeling mineral dust emission, J. Geophys. Res.-Atmos., 118, 6100–6121, https://doi.org/10.1002/jgrd.50394, 2013. a, b, c
[11] Parajuli, S.P. and Zender, C.S.: Connecting geomorphology to dust emissionthrough high-resolution mapping of global land cover and sediment supply,Aeolian Research, 27, 47–65,https://doi.org/10.1016/j.aeolia.2017.06.002,2017. a
[12] Rodgers, C. D.: Inverse Methods for Atmospheric Sounding – Theory and Practice,vol. 2 of Series on Atmospheric, Oceanic and Planetary Physics, WorldScientific, Singapore, 2000. a
[13] Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:Environmental characterization of global sources of atmospheric soil dustidentified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS)absorbing aerosol product., Rev. Geophys., 40, 2-1–2-31,https://doi.org/10.1029/2000RG000095, 2002. a
[14] Huang, J. P., Liu, J. J., Chen, B., and Nasiri, S. L.: Detection of anthropogenic dust using CALIPSO lidar measurements, Atmos. Chem. Phys., 15, 11653–11665, https://doi.org/10.5194/acp-15-11653-2015, 2015. a
[15] Kaly, F., Marticoréna, B., Chatenet, B., Rajot, J., Janicot, S., Niang, A.,Yahi, H., Thiria, S., Maman, A., Zakou, A., Coulibaly, B., Coulibaly, M.,Koné, I., Traoré, S., Diallo, A., and Ndiaye, T.: Variability of mineraldust concentrations over West Africa monitored by the Sahelian Dust Transect,Atmos. Res., 164–165, 226–241,https://doi.org/10.1016/j.atmosres.2015.05.011,2015. a, b
[16] Gherboudj, I., Beegum, S. N., and Ghedira, H.: Identifying natural dust sourceregions over the Middle-East and North-Africa: Estimation of dust emissionpotential, Earth-Sci. Rev., 165, 342–355, https://doi.org/10.1016/j.earscirev.2016.12.010, 2016. a, b, c, d
[17] Jacquinet-Husson, N., Crepeau, L., Armante, R., Boutammine, C., Chédin, A.,Scott, N., Crevoisier, C., Capelle, V., Boone, C., Poulet-Crovisier, N.,Barbe, A., Campargue, A., Chris Benner, D., Benilan, Y., Bézard, B., Boudon,V., Brown, L., Coudert, L., Coustenis, A., Dana, V., Devi, V., Fally, S.,Fayt, A., Flaud, J.-M., Goldman, A., Herman, M., Harris, G., Jacquemart, D.,Jolly, A., Kleiner, I., Kleinböhl, A., Kwabia-Tchana, F., Lavrentieva, N.,Lacome, N., Xu, L.-H., Lyulin, O., Mandin, J.-Y., Maki, A., Mikhailenko, S.,Miller, C., Mishina, T., Moazzen-Ahmadi, N., Müller, H., Nikitin, A.,Orphal, J., Perevalov, V., Perrin, A., Petkie, D., Predoi-Cross, A.,Rinsland, C., Remedios, J., Rotger, M., Smith, M., Sung, K., Tashkun, S.,Tennyson, J., Toth, R., Vandaele, A.-C., and Vander Auwera, J.: The 2009edition of the GEISA spectroscopic database, J. Quant.Spectrosc. Ra., 112, 2395–2445,2011. a
[18] Ashpole, I. and Washington, R.: A new high-resolution central and westernSaharan summertime dust source map from automated satellite dust plumetracking, J. Geophys. Res.-Atmos., 118, 1–15, https://doi.org/10.1002/jgrd.50554, 2013. a, b, c
[19] Tsamalis, C., Chédin, A., Pelon, J., and Capelle, V.: The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind, Atmos. Chem. Phys., 13, 11235–11257, https://doi.org/10.5194/acp-13-11235-2013, 2013. a
[20] Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:Global-scale attribution of anthropogenic and natural dust sources and theiremission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,RG3005, https://doi.org/10.1029/2012RG000388, 2012. a, b, c, d, e, f
[21] Allen, C. J. T., Washington, R., and Engelstaedter, S.: Dust emission andtransport mechanisms in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011, J. Geophys. Res.-Atmos., 118, 1–21, https://doi.org/10.1002/jgrd.50534, 2013. a, b, c, d, e
[22] Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple Collocation-BasedMerging of Satellite Soil Moisture Retrievals, IEEE T.Geosci. Remote, 55, 1–13, https://doi.org/10.1109/TGRS.2017.2734070,2017. a
[23] Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
[24] Vandenbussche, S., Kochenova, S., Vandaele, A. C., Kumps, N., and De Mazière, M.: Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window, Atmos. Meas. Tech., 6, 2577–2591, https://doi.org/10.5194/amt-6-2577-2013, 2013. a
[25] Volz, F.: Infrared refractive index of atmospheric aerosol substances, Appl.Optics, 11, 755–759, 1972. a
[26] Heinold, B., Knippertz, P., Marsham, J. H., Fiedler, S., Dixon, N. S.,Schepanski, K., Laurent, B., and Tegen, I.: The role of deep convection andnocturnal low-level jets for dust emission in summertime West Africa:Estimates from convection-permitting simulations, J. Geophys. Res.-Atmos.,118, 1–16, https://doi.org/10.1002/jgrd.50402, 2013. a, b, c, d, e, f
[27] Volz, F. E.: Infrared Optical Constants of Ammonium Sulfate, Sahara Dust,Volcanic Pumice, and Flyash, Appl. Optics, 12, 564–568,https://doi.org/10.1364/AO.12.000564,1973. a
[28] Marticorena, B., Chatenet, B., Rajot, J. L., Traoré, S., Coulibaly, M., Diallo, A., Koné, I., Maman, A., NDiaye, T., and Zakou, A.: Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect, Atmos. Chem. Phys., 10, 8899–8915, https://doi.org/10.5194/acp-10-8899-2010, 2010. a, b
[29] Massie, S.: Indices of refraction for the Hitran compilation, J.Quant. Spectrosc. Ra., 52, 501–513, 1994. a
[30] Massie, S. and Goldman, A.: The infrared absorption cross-section andrefractive-index data in HITRAN, J.Quant. Spectrosc. Ra., 82, 413–428, 2003. a
[31] Cuesta, J., Eremenko, M., Flamant, C., Dufour, G., Laurent, B., Bergametti, G.,Höpfner, M., Orphal, J., and Zhou, D.: Three-dimensional distribution of amajor desert dust outbreak over East Asia in March 2008 derived from IASIsatellite observations, J. Geophys. Res.-Atmos., 120, 7099–7127,https://doi.org/10.1002/2014JD022406, 2015. a
[32] Crouvi, O., Schepanski, K., Amit, R., Gillespie, A. R., and Enzel, Y.: Multipledust sources in the Sahara Desert: The importance of sand dunes, Geophys.Res. Lett., 39, L13401, https://doi.org/10.1029/2012GL052145, 2012. a, b
[33] Schepanski, K., Heinold, B., and Tegen, I.: Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic, Atmos. Chem. Phys., 17, 10223–10243, https://doi.org/10.5194/acp-17-10223-2017, 2017. a, b, c, d, e, f, g, h
[34] Todd, M. C. and Cavazos-Guerra, C.: Dust aerosol emission over the Saharaduring summertime from Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) observations, Atmos. Environ., 128, 147–157,https://doi.org/10.1016/j.atmosenv.2015.12.037,2016. a, b, c
[35] Marticoréna, B.: Mineral Dust – A key player in the Earth system, chap. 5:Dust production mechanisms, ISBN 978-94-017-8977-6, 93–120, Springer Netherlands, 2014. a, b, c, d, e
[36] Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009. a
[37] Shettle, E. P. and Fenn, R. W.: Models for the Aerosols of the Lower Atmosphereand the Effects of Humidity Variations on Their Optical Properties,AFGL-TR-79-0214, 1979. a
[38] Marsham, J. H., Hobby, M., Allen, C. J. T., Banks, J. R., Bart, M., Brooks,B. J., Cavazos-Guerra, C., Engelstaedter, S., Gascoyne, M., Lima, A. R.,Martins, J. V., McQuaid, J. B., O'Leary, A., Ouchene, B., Ouladichir, A.,Parker, D. J., Saci, A., Salah-Ferroudj, M., Todd, M. C., and Washington, R.:Meteorology and dust in the central Sahara: Observations from Fennecsupersite-1 during the June 2011 Intensive Observation Period, J.Geophys. Res.-Atmos., 118, 4069–4089, https://doi.org/10.1002/jgrd.50211,2013. a, b
[39] Maes, K., Vandenbussche, S., Klüser, L., Kumps, N., and de Mazière, M.:Vertical Profiling of Volcanic Ash from the 2011 Puyehue Cordón CaulleEruption Using IASI, Remote Sens.-Basel, 8, 103, https://doi.org/10.3390/rs8020103,2016. a
[40] Caton Harrison, T., Washington, R., and Engelstaedter, S.: A 14-YearClimatology of Saharan Dust Emission Mechanisms Inferred From AutomaticallyTracked Plumes, J. Geophys. Res.-Atmos., 124,9665–9690, https://doi.org/10.1029/2019JD030291, 2019. a
[41] Schepanski, K., Tegen, I., Laurent, B., Heinold, B., and Macke, A.: A newSaharan dust source activation frequency map derived from MSG-SEVIRIIR-channels, Geophys. Res. Lett., 34, L18803, https://doi.org/10.1029/2007GL030168,2007. a, b, c, d, e, f, g, h
[42] Choobari, O. A., Zawar-Reza, P., and Sturman, A.: The global distribution ofmineral dust and its impacts on the climate system: A review, Atmos.Res., 138, 152–165,https://doi.org/10.1016/j.atmosres.2013.11.007, 2014. a
[43] Schepanski, K., Tegen, I., and Macke, A.: Comparison of satellite basedobservations of Saharan dust source areas, Remote Sens. Environ.,123, 90–97,2012. a, b, c, d, e, f, g, h, i, j, k
[44] Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G. andForster,P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,S., Sherwood, S., Stevens, B., and Zhang, X.: Climate Change 2013: ThePhysical Science Basis. Contribution of Working Group I to the FifthAssessment Report of the Intergovernmental Panel on Climate Change, chap.Clouds and Aerosols, Cambridge University Press, Cambridge, United Kingdomand New York, NY, USA, 2013. a
[45] Liu, Y., Dorigo, W., Parinussa, R., de Jeu, R., Wagner, W., McCabe, M., Evans,J., and van Dijk, A.: Trend-preserving blending of passive and activemicrowave soil moisture retrievals, Remote Sens, Environ., 123, 280–297, https://doi.org/10.1016/j.rse.2012.03.014,2012. a
[46] Callewaert, S., Vandenbussche, S., Kumps, N., Kylling, A., Shang, X., Komppula, M., Goloub, P., and De Mazière, M.: The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and evaluation, Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019, 2019. a, b, c, d
[47] Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bönisch, G., Laurent,B., and Macke, A.: Meteorological processes forcing Saharan dust emissioninferred from MSG-SEVIRI observations of subdaily dust source activation andnumerical models, J. Geophys. Res., 114, D10201,https://doi.org/10.1029/2008JD010325, 2009. a, b, c, d, e, f, g, h, i, j, k, l, m
[48] Kocha, C., Tulet, P., Lafore, J.-P., and Flamant, C.: The importance of thediurnal cycle of Aerosol Optical Depth in West Africa, Geophys. Res. Lett.,40, 785–790, https://doi.org/10.1002/grl.50143, 2013. a, b, c
[49] Largeron, Y., Guichard, F., Bouniol, D., Couvreux, F., Kergoat, L., andMarticoréna, B.: Can we use surface wind fields from meteorologicalreanalyses for Sahelian dust emission simulations?, Geophys. Res.Lett., 42, 2490–2499, https://doi.org/10.1002/2014GL062938,2015. a
[50] Knippertz, P. and Todd, M. C.: Mineral dust aerosols over the Sahara:Meteorological controls on emission and transport and implications formodeling, Rev. Geophys., 50, RG1007,https://doi.org/10.1029/2011RG000362, 2012. a, b, c, d, e
文献评价指标
浏览 23次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次