首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 23 ,2020-12-04
The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere
Agnieszka Kupc 1 , 2 Christina J. Williamson 1 , 3 Anna L. Hodshire 4 Jan Kazil 1 , 3 Eric Ray 1 , 3 T. Paul Bui 5 Maximilian Dollner 2 Karl D. Froyd 1 , 3 Kathryn McKain 3 , 6 Andrew Rollins 1 Gregory P. Schill 1 , 3 Alexander Thames 7 Bernadett B. Weinzierl 2 Jeffrey R. Pierce 4 Charles A. Brock 1
Show affiliations

Global observations and model studies indicate that new particle formation (NPF) in the upper troposphere (UT) and subsequent particles supply 40 %–60 % of cloud condensation nuclei (CCN) in the lower troposphere, thus affecting the Earth's radiative budget. There are several plausible nucleation mechanisms and precursor species in this atmospheric region, which, in the absence of observational constraints, lead to uncertainties in modeled aerosols. In particular, the type of nucleation mechanism and concentrations of nucleation precursors, in part, determine the spatial distribution of new particles and resulting spatial distribution of CCN from this source. Although substantial advances in understanding NPF have been made in recent years, NPF processes in the UT in pristine marine regions are still poorly understood and are inadequately represented in global models. Here, we evaluate commonly used and state-of-the-art NPF schemes in a Lagrangian box model to assess which schemes and precursor concentrations best reproduce detailed in situ observations. Using measurements of aerosol size distributions (0.003 < Dp < 4.8 µm) in the remote marine troposphere between ∼0.18 and 13 km altitude obtained during the NASA Atmospheric Tomography (ATom) mission, we show that high concentrations of newly formed particles in the tropical UT over both the Atlantic and Pacific oceans are associated with outflow regions of deep convective clouds. We focus analysis on observations over the remote Pacific Ocean, which is a region less perturbed by continental emissions than the Atlantic. Comparing aerosol size distribution measurements over the remote Pacific with box model simulations for 32 cases shows that none of the NPF schemes most commonly used in global models, including binary nucleation of sulfuric acid and water (neutral and ion-assisted) and ternary involving sulfuric acid, water, and ammonia, are consistent with observations, regardless of precursor concentrations. Through sensitivity studies, we find that the nucleation scheme among those tested that is able to explain most consistently (21 of 32 cases) the observed size distributions is that of Riccobono et al. (2014), which involves both organic species and sulfuric acid. The method of Dunne et al. (2016), involving charged sulfuric acid–water–ammonia nucleation, when coupled with organic growth of the nucleated particles, was most consistent with the observations for 5 of 32 cases. Similarly, the neutral sulfuric acid–water–ammonia method of Napari (2002), when scaled with a tuning factor and with organic growth added, was most consistent for 6 of 32 cases. We find that to best reproduce both nucleation and growth rates, the mixing ratios of gas-phase organic precursors generally need to be at least twice that of SO2, a proxy for dimethyl sulfide (DMS). Unfortunately, we have no information on the nature of oxidized organic species that participated in NPF in this region. Global models rarely include organic-driven nucleation and growth pathways in UT conditions where globally significant NPF takes place, which may result in poor estimates of NPF and CCN abundance and contribute to uncertainties in aerosol–cloud–radiation effects. Furthermore, our results indicate that the organic aerosol precursor vapors may be important in the tropical UT above marine regions, a finding that should guide future observational efforts.


Copyright: © 2020 Agnieszka Kupc et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/


Agnieszka Kupc,Christina J. Williamson,Anna L. Hodshire,Jan Kazil,Eric Ray,T. Paul Bui,Maximilian Dollner,Karl D. Froyd,Kathryn McKain,Andrew Rollins,Gregory P. Schill,Alexander Thames,Bernadett B. Weinzierl,Jeffrey R. Pierce,Charles A. Brock. The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere. Atmospheric Chemistry and Physics ,Vol.20, Issue 23(2020)



[1] Dollner, M., et al.: Global in-situ observations of cloud phase during the airborne Atmospheric Tomography Mission, Atmos. Chem. Phys. Discuss., in preparation, 2021. 
[2] Wofsy, S. C., Afshar, S., Allen, H. M., Apel, E. C., Asher, E. C., Barletta, B.,Bent, J., Bian, H., Biggs, B. C., Blake, D. R., Blake, N., Bourgeois, I., Brock, C. A.,Brune, W. H., Budney, J. W., Bui, T. P., Butler, A., Campuzano-Jost, P., Chang, C. S., Chin, M., Commane, R., Correa, G., Crounse, J. D., Cullis, P. D., Daube, B. C.,Day, D. A., Dean-Day, J. M., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M.,Elkins, J. W., Erdesz, F., Fiore, A. M., Flynn, C. M., Froyd, K. D., Gesler, D. W.,Hall, S. R., Hanisco, T. F., Hannun, R. A., Hills, A. J., Hintsa, E. J., Hoffman, A.,Hornbrook, R. S., Huey, L. G., Hughes, S., Jimenez, J. L., Johnson, B. J., Katich, J. M.,Keeling, R. F., Kim, M. J., Kupc, A., Lait, L. R., Lamarque, J.-F., Liu, J.,McKain, K., Mclaughlin, R. J., Meinardi, S., Miller, D. O., Montzka, S. A., Moore, F. L.,Morgan, E. J., Murphy, D. M., Murray, L. T., Nault, B. A., Neuman, J. A., Newman, P. A.,Nicely, J. M., Pan, X., Paplawsky, W., Peischl, J., Prather, M. J., Price, D. J.,Ray, E., Reeves, J. M., Richardson, M., Rollins, A. W., Rosenlof, K. H., Ryerson, T. B.,Scheuer, E., Schill, G. P., Schroder, J. C., Schwarz, J. P., St.Clair, J. M.,Steenrod, S. D., Stephens, B. B., Strode, S. A., Sweeney, C., Tanner, D., Teng, A. P.,Thames, A. B., Thompson, C. R., Ullmann, K., Veres, P. R., Vieznor, N., Wagner, N. L.,Watt, A., Weber, R., Weinzierl, B., Wennberg, P. O., Williamson, C. J., Wilson, J. C.,Wolfe, G. M., Woods, C. T., and Zeng, L. H.: ATom: Merged atmosphericchemistry, trace gases, and aerosols, ORNL DAAC, Oak Ridge, Tennessee, USA,https://doi.org/10.3334/ORNLDAAC/1581, 2018. 
[3] Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T.,Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J.L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A.,Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C.A.: A large source of cloud condensation nuclei from new particle formationin the tropics, Nature, 574, 399–403, https://doi.org/10.1038/s41586-019-1638-9, 2019. 
[4] Croft, B., Martin, R. V., Leaitch, W. R., Burkart, J., Chang, R. Y.-W., Collins, D. B., Hayes, P. L., Hodshire, A. L., Huang, L., Kodros, J. K., Moravek, A., Mungall, E. L., Murphy, J. G., Sharma, S., Tremblay, S., Wentworth, G. R., Willis, M. D., Abbatt, J. P. D., and Pierce, J. R.: Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago, Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019, 2019. 
[5] de Reus, M., Krejci, R., Scheele, R., Williams, J., Fischer, H., andStröm, J.: Vertical distributions of the aerosol number concentration andsize distribution over the northern hemisphere Indian Ocean, J. Geophys.Res., 106, 28629–28642, 2001. 
[6] Willis, M. D., Burkart, J., Thomas, J. L., Köllner, F., Schneider, J., Bozem, H., Hoor, P. M., Aliabadi, A. A., Schulz, H., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Growth of nucleation mode particles in the summertime Arctic: a case study, Atmos. Chem. Phys., 16, 7663–7679, https://doi.org/10.5194/acp-16-7663-2016, 2016. 
[7] Clement, C. F., Ford, I. J., Twohy, C. H., Weinheimer, A. J., and Campos, T.:Particle production in the outflow of a mid-latitude storm, J. Geophys.Res., 107, AAC 5-1–AAC 5-9, https://doi.org/10.1029/2001JD001352, 2002. 
[8] Clarke, A. D., Owens, S. R., and Zhou, J.: An ultrafine sea-salt flux frombreaking waves: Implications for cloud condensation nuclei in the remotemarine atmosphere, J. Geophys. Res., 111, D06202, https://doi.org/10.1029/2005JD006565,2006. 
[9] Williamson, C., Kupc, A., Wilson, J., Gesler, D. W., Reeves, J. M., Erdesz, F., McLaughlin, R., and Brock, C. A.: Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer, Atmos. Meas. Tech., 11, 3491–3509, https://doi.org/10.5194/amt-11-3491-2018, 2018. 
[10] Clarke, A. D. and Kapustin, V. N.: A Pacific Aerosol Survey. Part I: ADecade of Data on Particle Production, Transport, Evolution, and Mixing inthe Troposphere, Journal of J. Atmos. Sci., 59, 363–382,[11] 3C0363:Apaspi
[12] 3E2.0.Co;2">https://doi.org/10.1175/1520-0469(2002)059<0363:Apaspi>2.0.Co;2, 2002. 
[13] Westervelt, D. M., Pierce, J. R., Riipinen, I., Trivitayanurak, W., Hamed, A., Kulmala, M., Laaksonen, A., Decesari, S., and Adams, P. J.: Formation and growth of nucleated particles into cloud condensation nuclei: model–measurement comparison, Atmos. Chem. Phys., 13, 7645–7663, https://doi.org/10.5194/acp-13-7645-2013, 2013. 
[14] Clarke, A. D., Eisele, F., Kapustin, V. N., Moore, K., Tanner, D., Mauldin, L., Litchy,M., Lienert, B., Carroll, M. A., and Albercook, G.: Nucleation in theequatorial free troposphere: Favorable environments during PEM-Tropics, J.Geophys. Res., 104, 5735–5744, 1999. 
[15] Westervelt, D. M., Pierce, J. R., and Adams, P. J.: Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation, Atmos. Chem. Phys., 14, 5577–5597, https://doi.org/10.5194/acp-14-5577-2014, 2014. 
[16] Burkart, J., Hodshire, A. L., Mungall, E. L., Pierce, J. R., Collins, D. B.,Ladino, L. A., Lee, A. K. Y., Irish, V., Wentzell, J. J. B., Liggio, J.,Papakyriakou, T., Murphy, J., and Abbatt, J.: Organic condensation andparticle growth to CCN sizes in the summertime marine Arctic is driven bymaterials more semivolatile than at continental sites, Geophys. Res. Lett.,44, 10725–10734, https://doi.org/10.1002/2017gl075671, 2017. 
[17] Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., Bui, T. P., Commane, R., Crounse, J. D., Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hintsa, E. J., Hornbrook, R. S., Kim, M. J., McKain, K., Moore, F. L., Neuman, J. A., Nicely, J. M., Peischl, J., Ryerson, T. B., St. Clair, J. M., Sweeney, C., Teng, A. P., Thompson, C., Ullmann, K., Veres, P. R., Wennberg, P. O., and Wolfe, G. M.: Exploring oxidation in the remote free troposphere: Insights from Atmospheric Tomography (ATom), J. Geophys. Res.-Atmos., 125, e2019JD031685, https://doi.org/10.1029/2019JD031685, 2020. 
[18] Weigelt, A., Hermann, M., van Velthoven, P. F. J., Brenninkmeijer, C. A. M., Schlaf, G., Zahn, A., and Wiedensohler, A.: Influence of clouds on aerosol particle number concentrations in the upper troposphere, J. Geophys. Res., 114, D01204, https://doi.org/10.1029/2008JD009805, 2009. 
[19] Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C.R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni, U.,Rissanen, M. P., Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner,R., Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:Causes and importance of new particle formation in the present-day andpreindustrial atmospheres, J. Geophys. Res., 122, 8739–8760,https://doi.org/10.1002/2017jd026844, 2017. 
[20] Rollins, A. W., Thornberry, T. D., Watts, L. A., Yu, P., Rosenlof, K. H.,Mills, M., Baumann, E., Giorgetta, F. R., Bui, T. V., Höpfner, M.,Walker, K. A., Boone, C., Bernath, P. F., Colarco, P. R., Newman, P. A.,Fahey, D. W., and Gao, R. S.: The role of sulfur dioxide in stratosphericaerosol formation evaluated by using in situ measurements in the tropicallower stratosphere, Geophys. Res. Lett., 44, 4280–4286,https://doi.org/10.1002/2017gl072754, 2017.