首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-11-13
Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos
Developmental Biology
Joshua F Coulcher 1 Agnès Roure 1 Rafath Chowdhury 1 Méryl Robert 1 Laury Lescat 1 Aurélie Bouin 1 Juliana Carvajal Cadavid 1 Hiroki Nishida 2 Sébastien Darras 1
Show affiliations
Received 2020-05-21, accepted for publication 2020-11-13, Published 2020-11-13

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.


Other;C. intestinalis;cis-regulation;developmental system drift;gene expression;evo-devo;ascidians


© 2020, Coulcher et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Joshua F Coulcher,Agnès Roure,Rafath Chowdhury,Méryl Robert,Laury Lescat,Aurélie Bouin,Juliana Carvajal Cadavid,Hiroki Nishida,Sébastien Darras. Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. eLife ,Vol.9(2020)



[1] A Roure, P Lemaire, S Darras. (2014). An otx/nodal regulatory signature for posterior neural development in ascidians. PLOS Genetics.10. DOI: 10.1007/s00427-002-0264-x.
[2] C Racioppi, MC Valoroso, U Coppola, EK Lowe. et al.(2017). Evolutionary loss of melanogenesis in the tunicate. EvoDevo.8. DOI: 10.1007/s00427-002-0264-x.
[3] SM Brugger, AE Merrill, J Torres-Vazquez, N Wu. et al.(2004). A phylogenetically conserved cis-regulatory module in the Msx2 promoter is sufficient for BMP-dependent transcription in murine and embryos. Development.131:5153-5165. DOI: 10.1007/s00427-002-0264-x.
[4] A Madgwick, MS Magri, C Dantec, D Gailly. et al.(2019). Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Developmental Biology.448:71-87. DOI: 10.1007/s00427-002-0264-x.
[5] A Roure, S Darras. (2016). Msxb is a core component of the genetic circuitry specifying the dorsal and ventral neurogenic midlines in the ascidian embryo. Developmental Biology.409:277-287. DOI: 10.1007/s00427-002-0264-x.
[6] A Pasini, R Manenti, U Rothbächer, P Lemaire. et al.(2012). Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLOS ONE.7. DOI: 10.1007/s00427-002-0264-x.
[7] S Fisher, EA Grice, RM Vinton, SL Bessling. et al.(2006). Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science.312:276-279. DOI: 10.1007/s00427-002-0264-x.
[8] RW Lusk, MB Eisen. (2010). Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in enhancers. PLOS Genetics.6. DOI: 10.1007/s00427-002-0264-x.
[9] R Brunetti, C Gissi, R Pennati, F Caicci. et al.(2015). Morphological evidence that the molecularly determined type A and type B are different species: and. Journal of Zoological Systematics and Evolutionary Research.53:186-193. DOI: 10.1007/s00427-002-0264-x.
[10] N Satoh. (1994). Developmental Biology of Ascidians. DOI: 10.1007/s00427-002-0264-x.
[11] A Pasini, A Amiel, U Rothbächer, A Roure. et al.(2006). Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLOS Biology.4. DOI: 10.1007/s00427-002-0264-x.
[12] MT Weirauch, A Yang, M Albu, AG Cote. et al.(2014). Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell.158:1431-1443. DOI: 10.1007/s00427-002-0264-x.
[13] N Satoh, D Rokhsar, T Nishikawa. (2014). Chordate evolution and the three-phylum system. Proceedings of the Royal Society B: Biological Sciences.281. DOI: 10.1007/s00427-002-0264-x.
[14] C Hudson, M Ba, C Rouviere, H Yasuo. et al.(2011). Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development.138:1643-1652. DOI: 10.1007/s00427-002-0264-x.
[15] O Fornes, JA Castro-Mondragon, A Khan, R van der Lee. et al.(2020). JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research.48:D87-D92. DOI: 10.1007/s00427-002-0264-x.
[16] K Hotta, K Mitsuhara, H Takahashi, K Inaba. et al.(2007). A web-based interactive developmental table for the ascidian , including 3D real-image embryo reconstructions: I. from fertilized egg to hatching larva. Developmental Dynamics.236:1790-1805. DOI: 10.1007/s00427-002-0264-x.
[17] K Yagi, KW Makabe. (2001). Isolation of an early neural maker gene abundantly expressed in the nervous system of the ascidian, Halocynthia roretzi. Development Genes and Evolution.211:49-53. DOI: 10.1007/s00427-002-0264-x.
[18] CE Grant, TL Bailey, WS Noble. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics.27:1017-1018. DOI: 10.1007/s00427-002-0264-x.
[19] AR Gehrke, I Schneider, E de la Calle-Mustienes, JJ Tena. et al.(2015). Deep conservation of wrist and digit enhancers in fish. PNAS.112:803-808. DOI: 10.1007/s00427-002-0264-x.
[20] JL Huber, KB da Silva, WR Bates, BJ Swalla. et al.(2000). The evolution of anural larvae in molgulid ascidians. Seminars in Cell & Developmental Biology.11:419-426. DOI: 10.1007/s00427-002-0264-x.
[21] K Waki, KS Imai, Y Satou. (2015). Genetic pathways for differentiation of the peripheral nervous system in ascidians. Nature Communications.6. DOI: 10.1007/s00427-002-0264-x.
[22] M Levine, EH Davidson. (2005). Gene regulatory networks for development. PNAS.102:4936-4942. DOI: 10.1007/s00427-002-0264-x.
[23] AD Buffry, CC Mendes, AP McGregor. (2016). The functionality and evolution of eukaryotic transcriptional enhancers. Advances in Genetics.96:143-206. DOI: 10.1007/s00427-002-0264-x.
[24] P Lemaire, D biology. (2006). How many ways to make a chordate?. Science.312:1145-1146. DOI: 10.1007/s00427-002-0264-x.
[25] F Razy-Krajka, A Stolfi. (2019). Regulation and evolution of muscle development in tunicates. EvoDevo.10. DOI: 10.1007/s00427-002-0264-x.
[26] Y Ohtsuka, Y Okamura, T Obinata. (2001b). Changes in gelsolin expression during ascidian metamorphosis. Development Genes and Evolution.211:252-256. DOI: 10.1007/s00427-002-0264-x.
[27] CD Brown, DS Johnson, A Sidow. (2007). Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science.317:1557-1560. DOI: 10.1007/s00427-002-0264-x.
[28] P Lemaire. (2011). Evolutionary crossroads in developmental biology: the tunicates. Development.138:2143-2152. DOI: 10.1007/s00427-002-0264-x.
[29] I Oda-Ishii, V Bertrand, I Matsuo, P Lemaire. et al.(2005). Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development.132:1663-1674. DOI: 10.1007/s00427-002-0264-x.
[30] Y Ohtsuka, T Obinata, Y Okamura. (2001a). Induction of ascidian peripheral neuron by vegetal blastomeres. Developmental Biology.239:107-117. DOI: 10.1007/s00427-002-0264-x.
[31] T Horie, T Kusakabe, M Tsuda. (2008). Glutamatergic networks in the Ciona intestinalis larva. The Journal of Comparative Neurology.508:249-263. DOI: 10.1007/s00427-002-0264-x.
[32] M Rebeiz, M Tsiantis. (2017). Enhancer evolution and the origins of morphological novelty. Current Opinion in Genetics & Development.45:115-123. DOI: 10.1007/s00427-002-0264-x.
[33] P Lemaire, WC Smith, H Nishida. (2008). Ascidians and the plasticity of the chordate developmental program. Current Biology.18:R620-R631. DOI: 10.1007/s00427-002-0264-x.
[34] AJ Verster, AK Ramani, SJ McKay, AG Fraser. et al.(2014). Comparative RNAi screens in Elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLOS Genetics.10. DOI: 10.1007/s00427-002-0264-x.
[35] F Delsuc, H Philippe, G Tsagkogeorga, P Simion. et al.(2018). A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology.16. DOI: 10.1007/s00427-002-0264-x.
[36] A Roure, U Rothbächer, F Robin, E Kalmar. et al.(2007). A multicassette gateway vector set for high throughput and comparative analyses in Ciona and vertebrate embryos. PLOS ONE.2. DOI: 10.1007/s00427-002-0264-x.
[37] JR True, ES Haag. (2001). Developmental system drift and flexibility in evolutionary trajectories. Evolution and Development.3:109-119. DOI: 10.1007/s00427-002-0264-x.
[38] FF Esteves, A Springhorn, E Kague, E Taylor. et al.(2014). BMPs regulate msx gene expression in the dorsal neuroectoderm of and vertebrates by distinct mechanisms. PLOS Genetics.10. DOI: 10.1007/s00427-002-0264-x.
[39] D Hockman, V Chong-Morrison, SA Green, D Gavriouchkina. et al.(2019). A genome-wide assessment of the ancestral neural crest gene regulatory network. Nature Communications.10. DOI: 10.1007/s00427-002-0264-x.
[40] ES Haag. (2014). The same but different: worms reveal the pervasiveness of developmental system drift. PLOS Genetics.10. DOI: 10.1007/s00427-002-0264-x.
[41] S Wada, Y Katsuyama, H Saiga. (1999). Anteroposterior patterning of the epidermis by inductive influences from the vegetal hemisphere cells in the ascidian embryo. Development.126:4955-4963. DOI: 10.1007/s00427-002-0264-x.
[42] S Feinberg, A Roure, J Piron, S Darras. et al.(2019). Antero-posterior ectoderm patterning by canonical wnt signaling during ascidian development. PLOS Genetics.15. DOI: 10.1007/s00427-002-0264-x.
[43] SA Torrence, RA Cloney. (1982). Nervous system of ascidian larvae: caudal primary sensory neurons. Zoomorphology.99:103-115. DOI: 10.1007/s00427-002-0264-x.
[44] M Brozovic, C Dantec, J Dardaillon, D Dauga. et al.(2017). ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research.15:D718-D725. DOI: 10.1007/s00427-002-0264-x.
[45] M Brudno, CB Do, GM Cooper, MF Kim. et al.(2003). LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Research.13:721-731. DOI: 10.1007/s00427-002-0264-x.
[46] MJ Kourakis, WC Smith. (2015). An organismal perspective on C. intestinalis development, origins and diversification. eLife.4. DOI: 10.1007/s00427-002-0264-x.
[47] I Ovcharenko, GG Loots, RC Hardison, W Miller. et al.(2004). zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Research.14:472-477. DOI: 10.1007/s00427-002-0264-x.
[48] RK Bradley, XY Li, C Trapnell, S Davidson. et al.(2010). Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related species. PLOS Biology.8. DOI: 10.1007/s00427-002-0264-x.
[49] H Takahashi, Y Mitani, G Satoh, N Satoh. et al.(1999). Evolutionary alterations of the minimal promoter for notochord-specific brachyury expression in ascidian embryos. Development.126:3725-3734. DOI: 10.1007/s00427-002-0264-x.
[50] H Nishida. (1986). Cell division pattern during Gastrulation of the Ascidian, Halocynthia roretzi (cell division pattern/gastrulation/neurulation/ascidian embryo). Development, Growth and Differentiation.28:191-201. DOI: 10.1007/s00427-002-0264-x.
[51] EH Davidson, DH Erwin. (2006). Gene regulatory networks and the evolution of animal body plans. Science.311:796-800. DOI: 10.1007/s00427-002-0264-x.
[52] T Kawashima, S Kawashima, M Kanehisa, H Nishida. et al.(2000). MAGEST: maboya gene expression patterns and sequence tags. Nucleic Acids Research.28:133-135. DOI: 10.1007/s00427-002-0264-x.
[53] T Kawashima, S Kawashima, Y Kohara, M Kanehisa. et al.(2002). Update of MAGEST: maboya gene expression patterns and sequence tags. Nucleic Acids Research.30:119-120. DOI: 10.1007/s00427-002-0264-x.
[54] J Dardaillon, D Dauga, P Simion, E Faure. et al.(2020). ANISEED 2019: 4d exploration of genetic data for an extended range of tunicates. Nucleic Acids Research.48:D668-D675. DOI: 10.1007/s00427-002-0264-x.
[55] A Stolfi, Y Sasakura, D Chalopin, Y Satou. et al.(2015). Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis.53:1-14. DOI: 10.1007/s00427-002-0264-x.
[56] KR Nitta, R Vincentelli, E Jacox, A Cimino. et al.(2019). High-Throughput protein production combined with high- Throughput SELEX identifies an extensive atlas of Ciona robusta transcription factor DNA-Binding specificities. Methods in Molecular Biology.2025:487-517. DOI: 10.1007/s00427-002-0264-x.
[57] V Bertrand, C Hudson, D Caillol, C Popovici. et al.(2003). Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and ets transcription factors. Cell.115:615-627. DOI: 10.1007/s00427-002-0264-x.
[58] CD Arnold, D Gerlach, D Spies, JA Matts. et al.(2014). Quantitative genome-wide enhancer activity maps for five species show functional enhancer conservation and turnover during cis-regulatory evolution. Nature Genetics.46:685-692. DOI: 10.1007/s00427-002-0264-x.
[59] A Stolfi, EK Lowe, C Racioppi, F Ristoratore. et al.(2014). Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife.3. DOI: 10.1007/s00427-002-0264-x.
[60] E O'Flaherty, J Kaye. (2003). TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics.4. DOI: 10.1007/s00427-002-0264-x.
[61] S Barolo. (2012). Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. BioEssays.34:135-141. DOI: 10.1007/s00427-002-0264-x.
[62] P Dehal, Y Satou, RK Campbell, J Chapman. et al.(2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science.298:2157-2167. DOI: 10.1007/s00427-002-0264-x.
[63] W Joyce Tang, JS Chen, RW Zeller. (2013). Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Developmental Biology.378:183-193. DOI: 10.1007/s00427-002-0264-x.
[64] N Shenkar, BJ Swalla. (2011). Global diversity of ascidiacea. PLOS ONE.6. DOI: 10.1007/s00427-002-0264-x.
[65] E Cannavò, P Khoueiry, DA Garfield, P Geeleher. et al.(2016). Shadow enhancers are pervasive features of developmental regulatory networks. Current Biology.26:38-51. DOI: 10.1007/s00427-002-0264-x.
[66] S Schwartz, WJ Kent, A Smit, Z Zhang. et al.(2003). Human-mouse alignments with BLASTZ. Genome Research.13:103-107. DOI: 10.1007/s00427-002-0264-x.
[67] JS Chen, MS Pedro, RW Zeller. (2011). miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the notch signaling pathway. Development.138:4943-4953. DOI: 10.1007/s00427-002-0264-x.
[68] KS Imai, K Hino, K Yagi, N Satoh. et al.(2004). Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development.131:4047-4058. DOI: 10.1007/s00427-002-0264-x.
[69] A Alié, LS Hiebert, P Simion, M Scelzo. et al.(2018). Convergent acquisition of nonembryonic development in styelid ascidians. Molecular Biology and Evolution.35:1728-1743. DOI: 10.1007/s00427-002-0264-x.
[70] S Candiani, R Pennati, D Oliveri, A Locascio. et al.(2005). Ci-POU-IV expression identifies PNS neurons in embryos and larvae of the ascidian Ciona intestinalis. Development Genes and Evolution.215:41-45. DOI: 10.1007/s00427-002-0264-x.
[71] DS José-Edwards, I Oda-Ishii, JE Kugler, YJ Passamaneck. et al.(2015). Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLOS Genetics.11. DOI: 10.1007/s00427-002-0264-x.
[72] DM McGaughey, RM Vinton, J Huynh, A Al-Saif. et al.(2008). Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Research.18:252-260. DOI: 10.1007/s00427-002-0264-x.
[73] T Akanuma, S Hori, S Darras, H Nishida. et al.(2002). Notch signaling is involved in nervous system formation in ascidian embryos. Development Genes and Evolution.212:459-472. DOI: 10.1007/s00427-002-0264-x.
[74] I Mita-Miyazawa, S Ikegami, N Satoh. (1985). Histospecific acetylcholinesterase development in the presumptive muscle cells isolated from 16-cell-stage ascidian embryos with respect to the number of DNA replications. Journal of Embryology and Experimental Morphology.87:1-12. DOI: 10.1007/s00427-002-0264-x.
[75] N Satoh. (2014). Developmental genomics of ascidians. DOI: 10.1007/s00427-002-0264-x.
[76] DS Johnson, B Davidson, CD Brown, WC Smith. et al.(2004). Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Research.14:2448-2456. DOI: 10.1007/s00427-002-0264-x.
[77] LC Yao, IL Blitz, DA Peiffer, S Phin. et al.(2006). Schnurri transcription factors from and vertebrates can mediate bmp signaling through a phylogenetically conserved mechanism. Development.133:4025-4034. DOI: 10.1007/s00427-002-0264-x.
[78] A Yamada, H Nishida. (1999). Distinct parameters are involved in controlling the number of rounds of cell division in each tissue during ascidian embryogenesis. Journal of Experimental Zoology.284:379-391. DOI: 10.1007/s00427-002-0264-x.
[79] MA Nieto. (2018). A snail tale and the chicken embryo. The International Journal of Developmental Biology.62:121-126. DOI: 10.1007/s00427-002-0264-x.
[80] C Hudson, H Yasuo. (2008). Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biology of the Cell.100:265-277. DOI: 10.1007/s00427-002-0264-x.
[81] W Colgan, A Leanza, A Hwang, MB DeBiasse. et al.(2019). Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements. EvoDevo.10. DOI: 10.1007/s00427-002-0264-x.
浏览 17次
下载全文 5次
评分次数 0次
用户评分 0.0分
分享 0次