首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 16 ,2020-08-27
Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory
Xiao Han 1 , 2 Lingyun Zhu 3 Mingxu Liu 4 Yu Song 4 Meigen Zhang 1 , 2 , 5
Show affiliations
DOI:10.5194/acp-20-9979-2020
PDF
摘要

China is one of the largest agricultural countries in the world. Thus, NH3 emission from agricultural activities in China considerably affects the country's regional air quality and visibility. In this study, a high-resolution agricultural NH3 emission inventory compiled on 1 km × 1 km horizontal resolution was applied to calculate the NH3 mass burden in China and reliably estimate the influence of NH3 on agriculture. The key parameter emission factors of this inventory were enhanced by considering many experiment results, and the dynamic data of spatial and temporal information were updated using statistical data of 2015. In addition to fertilizers and husbandry, farmland ecosystems, livestock waste, crop residue burning, wood-based fuel combustion, and other NH3 emission sources were included in this inventory. Furthermore, a source apportionment tool, namely, the Integrated Source Apportionment Method (ISAM) coupled with the air quality modeling system Regional Atmospheric Modeling System and Community Multiscale Air Quality, was applied to capture the contribution of NH3 emitted from total agriculture (Tagr) in China. The aerosol mass concentration in 2015 was simulated, and results showed that the high mass concentration of NH3 exceeded 10 µg m−3 and mainly appeared in the North China Plain, Central China, the Yangtze River Delta, and the Sichuan Basin. Moreover, the annual average contribution of Tagr NH3 to PM2.5 mass burden was 14 %–22 % in China. Specific to the PM2.5 components, Tagr NH3 contributed dominantly to ammonium formation (87.6 %) but trivially to sulfate formation (2.2 %). In addition, several brute-force sensitivity tests were conducted to estimate the impact of Tagr NH3 emission reduction on PM2.5 mass burden. In contrast to the result of ISAM, even though the Tagr NH3 only provided 10.1 % contribution to nitrate under the current emission scenario, the reduction of nitrate could reach 95.8 % upon removal of the Tagr NH3 emission. This deviation occurred because the contribution of NH3 to nitrate should be small under a “rich NH3”environment and large under a “poor NH3” environment. Thus, the influence of NH3 on nitrate formation would be enhanced with the decrease in ambient NH3 mass concentration.

授权许可

Copyright: © 2020 Xiao Han et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Xiao Han,Lingyun Zhu,Mingxu Liu,Yu Song,Meigen Zhang. Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory. Atmospheric Chemistry and Physics ,Vol.20, Issue 16(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Lei, Y., Zhang, Q., He, K. B., and Streets, D. G.: Primary anthropogenic aerosol emission trends for China, 1990–2005, Atmos. Chem. Phys., 11, 931–954, https://doi.org/10.5194/acp-11-931-2011, 2011. 
[2] Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang,S., Xu, T., Kang, L., Cai, X., Zhang, H., Yang, F., Wang, H., Yu, J., Lau,A., He, L., Huang, X., Duan, L., Ding, A., Xue, L., Gao, J., Liu, B., andZhu, T.: Ammonia emission control in China would mitigate haze pollution andnitrogen deposition, but worsen acid rain, P. Natl. Acad. Sci. USA., 116, 7760–7765, https://doi.org/10.1073/pnas.1814880116, 2019. 
[3] Wang, S., Xing, J., Jang, C., Zhu, Y., Fu, J., and Hao, J.: ImpactAssessment of Ammonia Emissions on Inorganic Aerosols in East China UsingResponse Surface Modeling Technique, Environ. Sci. Technol., 45, 9293–9300,https://doi.org/10.1021/es2022347, 2011. 
[4] Wang, S., Zhang, Q., Martin, R.V., Philip, S., Liu, F., Li, M., Jiang, X.,and He, K.: Satellite measurements oversee China's sulfur dioxide emissionreductions from coal-fired power plants, Environ. Res. Lett., 10, 114015, https://doi.org/10.1088/1748-9326/10/11/114015, 2015. 
[5] Wang, Z., Chien, C., and Tonnesen, G.: Development of a tagged speciessource apportionment algorithm to characterize three-dimensional transportand transformation of precursors and secondary pollutants, J. Geophys. Res.,114, D21206, https://doi.org/10.1029/2008JD010846, 2009. 
[6] Wang, H., Qiao, L., Lou, S., Zhou, M., Ding, A., Huang, H., Chen, J., Wang,Q., Tao, S., Chen, C., Li, L., and Huang, C.: Chemical composition ofPM2.5 and meteorological impact among three years in urban Shanghai,China, J. Clean. Prod, 112, 1302–1311, https://doi.org/10.1016/j.jclepro.2015.04.099,2016. 
[7] Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K. F., Lee,S., and Zhong, L.: Characterization of PM2.5 and the major chemicalcomponents during a 1-year campaign in rural Guangzhou, Southern China,Atmos. Res., 167, 208–215, https://doi.org/10.1016/j.atmosres.2015.08.007, 2016. 
[8] Babar, Z. B., Park, J., and Lim, H.: Influence of NH3 on secondaryorganic aerosols from the ozonolysis and photooxidation of a-pinene in aflow reactor, Atmos. Environ., 164, 71–84, https://doi.org/10.1016/j.atmosenv.2017.05.034, 2017. 
[9] Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013. 
[10] Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., and Wang, Z.:Formation process of the widespread extreme haze pollution over northernChina in January 2013: Implications for regional air quality and climate, Atmos. Environ., 98, 417–425, https://doi.org/10.1016/j.atmosenv.2014.09.026, 2014. 
[11] Ball, S. M., Hanson, D. R., and Eisele, F. L.: McMurry, P. H. Laboratorystudies of particle nucleation: Initial results for H2SO4,H2O, and NH3 vapors, J. Geophys. Res., 104, 23709–23718, https://doi.org/10.1029/1999JD900411, 1999. 
[12] Kulmala, M., Korhonen, P., Napari, I., Karlsson, A., Berresheim, H., andO'Dowd, C. D.: Aerosol formation during PARFORCE: Ternary nucleation ofH2SO4, NH3, and H2O, J. Geophys. Res., 107, 1–11https://doi.org/10.1029/2001JD000900, 2002. 
[13] van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. 
[14] Benson, D. R., Yu, J. H., Markovich, A., and Lee, S.-H.: Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere, Atmos. Chem. Phys., 11, 4755–4766, https://doi.org/10.5194/acp-11-4755-2011, 2011. 
[15] Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018. 
[16] Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. Chem. Phys., 13, 5685–5696, https://doi.org/10.5194/acp-13-5685-2013, 2013. 
[17] Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin,Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang,Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L.,Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B.,Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R.A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from LondonFog to Chinese haze, P. Natl. Acad. Sci. USA., 113, 13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016. 
[18] Zhou, F., Ciais, P., Hayashi, K., Galloway, J., Kim, D., Yang, L., Li, S.,Liu, B., Shang, Z., and Gao, S.: Re-estimating NH3 emissions fromChinese cropland by a new nonlinear model, Environ. Sci. Technol., 50,564–572, https://doi.org/10.1021/acs.est.5b03156, 2016. 
[19] Zhou, Y., Cheng, S., Lang, J., Chen, D., Zhao, B., Liu, C., Xu, R., and Li,T., A comprehensive ammonia emission inventory with high-resolution and itsevaluation in the Beijing–Tianjin–Hebei (BTH) region, China, Atmos.Environ., 106, 305–317, https://doi.org/10.1016/j.atmosenv.2015.01.069, 2015. 
[20] Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016. 
[21] Koo, B., Wilson, G., Morris, R., Dunker, A., and Yarwood, G.: Comparison ofSource Apportionment and Sensitivity Analysis in a Particulate Matter AirQuality Model, Environ. Sci. Technol., 43, 6669–6675, 2009. 
[22] Xu, P., Liao, Y. J., Lin, Y. H., Zhao, C. X., Yan, C. H., Cao, M. N., Wang, G. S., and Luan, S. J.: High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008, Atmos. Chem. Phys., 16, 1207–1218, https://doi.org/10.5194/acp-16-1207-2016, 2016. 
[23] Chang, J.: The role of H2O and NH3 on the formation ofNH4NO3 aerosol particles and De-NOx under the corona dischargetreatment of combustion flue gases, J. Aerosol Sci., 20, 1087–1090,https://doi.org/10.1016/0021-8502(89)90768-4, 1989. 
[24] Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T., and Hao, J.: IncreasingAmmonia Concentrations Reduce the Effectiveness of Particle PollutionControl Achieved via SO2 and NOx Emissions Reduction in East China, Environ. Sci. Technol., 4, 221–227,https://doi.org/10.1021/acs.estlett.7b00143, 2017. 
[25] Ren, H., Zhang, L., and Hong, X.: Politic recommendations on strengtheningreduction of air pollutant emissions in China, Environ. Sustain. Dev., 39,4–13, 2014 (in Chinese). 
[26] Cao, Z., Zhou, X., Ma, Y., Wang, L., Wu, R., Chen, B., and Wang, W.: Theconcentrations, formations, relationships and modeling of sulfate, nitrateand ammonium (SNA) aerosols over China, Aerosol Air Qual. Res., 17, 84–97,https://doi.org/10.4209/aaqr.2016.01.0020, 2017. 
[27] Tanner, R. L., Leaderer, B. P., and Spengler, J. D., Acidity of atmosphericaerosols, Environ. Sci. Technol., 15, 1150–1153, https://doi.org/10.1021/es00092a003,1981. 
[28] Xu, P., Koloutsou-Vakakis, S., Rood, M., and Luan, S.: Projections ofNH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios, Sci. Total Environ., 31, 78–86,https://doi.org/10.1016/j.scitotenv.2017.06.258, 2017. 
[29] Fu, X., Wang, S. X., Ran, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson, V., and Hao, J. M.: Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model, Atmos. Chem. Phys., 15, 6637–6649, https://doi.org/10.5194/acp-15-6637-2015, 2015. 
[30] Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.:Characteristics of heavy aerosol pollution during the 2012–2013 winter inBeijing, China, Atmos. Environ., 88, 83–89, https://doi.org/10.1016/j.atmosenv.2014.01.058, 2014. 
[31] Brost, R. A., Delany, A. C., and Huebert, B. J.: Numerical modeling ofconcentrations and fluxes of HNO3, NH3, and NH4NO3 nearthe ground, J. Geophys. Res., 93, 7137–7152, https://doi.org/10.1029/JD093iD06p07137,1988. 
[32] Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficientthermodynamic equilibrium model forK+Ca2+Mg2+NH4+Na+SO42-NO3-ClH2Oaerosols, Atmos. Chem. Phys., 7, 4639–4659,https://doi.org/10.5194/acp-7-4639-2007, 2007. 
[33] Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan, Y., Lin, Y., and Huang, B.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, 2018. 
[34] Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014. 
[35] Zhang, K., Ma, Y., Xin, J., Liu, Z., Ma, Y., Gao, D., Wu, J., Zhang, W.,Wang, Y., and Shen, P.: The aerosol optical properties and PM2.5components over the world's largest industrial zone in Tangshan, NorthChina, Atmos. Res., 201, 226–234, https://doi.org/10.1016/j.atmosres.2017.10.025, 2018. 
[36] Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys., 12, 779–799, https://doi.org/10.5194/acp-12-779-2012, 2012. 
[37] Yang, Y., Wilkinson, J., and Russell. A.: Fast, Direct Sensitivity Analysisof Multi-Dimensional Photochemical Models, Environ. Sci. Technol., 31,2859–2868, https://doi.org/10.1021/es970117w, 1997. 
[38] Zhao, Z., Bai, Z., Winiwarter, W., Kiesewetter, G., Heyes, C., and Ma, L.:Mitigating ammonia emission from agriculture reduces PM2.5 pollution inthe Hai River Basin in China, Sci. Total Environ., 609, 1152–1160,https://doi.org/10.1016/j.scitotenv.2017.07.240, 2017. 
[39] Huang, X., Song, Y., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang,H.: A high-resolution ammonia emission inventory in China, GlobalBiogeochem. Cy., 26, 1030–1044, https://doi.org/10.1029/2011GB004161, 2012. 
[40] Chen, Y., Schleicher, N., Cen, K., Liu, X., Yu, Y., Zibat, V., Dietze, V.,Fricker, M., Kaminski, U., Chen, Y., Chai, F., and Norra, S.: Evaluation ofimpact factors on PM2.5 based on long-term chemical components analysesin the megacity Beijing, China, Chemosphere, 155, 234–242,https://doi.org/10.1016/j.chemosphere.2016.04.052, 2016. 
[41] Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,D. K.: Ammonia emissions in the United States, European Union, and Chinaderived by high-resolution inversion of ammonium wet deposition data:Interpretation with a new agricultural emissions inventory(MASAGE_NH3), J. Geophys. Res., 119, 4343–4364, https://doi.org/10.1002/2013JD021130, 2014. 
[42] Whitten, G., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D., Carter, W.P. L., and Yarwwod, G.: A new condensed toluene mechanism for Carbon Bond:CB05-TU, Atmos. Environ., 44, 5346–5355,https://doi.org/10.1016/j.atmosenv.2009.12.029, 2010. 
[43] Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou,Y., Song, Y., Zhang, Q., and Wang, Y.: Identifying ammonia hotspots in Chinausing a national observation network, Environ. Sci. Technol., 52, 3926–3934 https://doi.org/10.1021/acs.est.7b05235, 2018. 
[44] De Foy, B., Lu, Z., and Streets, D. G.: Satellite NO2 retrievals suggestChina has exceeded its NOx reduction goals from the twelfth five-yearplan, Sci. Rep., 6, 35912, https://doi.org/10.1038/srep35912, 2016. 
[45] McMurry, P. H., Takano, H., and Anderson, G. R.: Study of the ammonia(gas)-sulfuric acid (aerosol) reaction rate, Environ. Sci. Technol., 17,347–352, https://doi.org/10.1021/es00112a008, 1983. 
[46] Cotton, W., Pielke, R., Walko, G., Liston, G., Tremback, C., Jiang, H.,McAnelly, R., Harrington, J., Nicholls, M., Carrio, G., and McFadden, J.:RAMS 2001: current status and future directions, Meteorol, Atmos. Phys., 82,5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003. 
[47] Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts ingaseous pollutant control indicated by the bottom-up emissions and satelliteobservations 2000-2014, Atmos. Environ., 136, 43–53,https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016. 
[48] Wu, S., Hu, J., Zhang, Y., and Aneja, V. P.: Modeling atmospheric transportand fate of ammonia in North Carolina-Part II: Effect of ammonia emissionson fine particulate matter formation, Atmos. Environ., 42, 3437–3451, https://doi.org/10.1016/j.atmosenv.2007.04.022, 2008. 
[49] Eder, B. and Yu S.: A performance evaluation of the 2004 release ofModels-3 CMAQ, Atmos. Environ., 40, 4811–4824,https://doi.org/10.1016/j.atmosenv.2005.08.045, 2006. 
[50] Mathur, R., Yu, S., Kang, D., and Schere, K.: Assessment of the winter-timeperformance of developmental particulate matter forecasts with the Eta-CMAQmodeling system, J. Geophys. Res., 113, D02303, https://doi.org/10.1029/2007JD008580, 2008. 
[51] Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011. 
文献评价指标
浏览 233次
下载全文 21次
评分次数 138次
用户评分 226.1分
分享 0次