首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 16 ,2020-08-24
The interaction between urbanization and aerosols during a typical winter haze event in Beijing
Miao Yu 1 Guiqian Tang 2 Yang Yang 1 Qingchun Li 1 Yonghong Wang 3 Shiguang Miao 1 Yizhou Zhang 1 Yuesi Wang 2
Show affiliations
DOI:10.5194/acp-20-9855-2020
PDF
摘要

Aerosols cause cooling at the surface by reducing shortwave radiation, while urbanization causes warming by altering the surface albedo and releasing anthropogenic heat. The combined effect of the two phenomena needs to be studied in depth. The effects of urbanization and aerosols were investigated during a typical winter haze event. The event, which occurred in Beijing from 15 to 22 December 2016, was studied via the Rapid-Refresh Multiscale Analysis and Prediction System – Short Term (RMAPS-ST) model. The mechanisms of the impacts of aerosols and urbanization were analyzed and quantified. Aerosols reduced urban-related warming during the daytime by 20 % (from 30 % to 50 %) as concentrations of fine particulate matter (PM2.5) increased from 200 to 400 µg m−3. Conversely, aerosols also enhanced urban-related warming at dawn, and the increment was approximately 28 %, which contributed to haze formation. Urbanization reduced the aerosol-related cooling effect by approximately 54 % during the haze event, and the strength of the impact changed little with increasing aerosol content. The impact of aerosols on urban-related warming was more significant than the impact of urbanization on aerosol-related cooling. Aerosols decreased the urban impact on the mixing-layer height by 148 % and on the sensible heat flux by 156 %. Furthermore, aerosols decreased the latent heat flux; however, this reduction decreased by 48.8 % due to urbanization. The impact of urbanization on the transport of pollutants was more important than that of aerosols. The interaction between urbanization and aerosols may enhance the accumulation of pollution and weigh against diffusion.

授权许可

Copyright: © 2020 Miao Yu et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Miao Yu,Guiqian Tang,Yang Yang,Qingchun Li,Yonghong Wang,Shiguang Miao,Yizhou Zhang,Yuesi Wang. The interaction between urbanization and aerosols during a typical winter haze event in Beijing. Atmospheric Chemistry and Physics ,Vol.20, Issue 16(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y., and Li, J.: Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953–12967, https://doi.org/10.5194/acp-18-12953-2018, 2018. 
[2] Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, G., Luley, C. J., andCrane, D. E.: A modeling study of the impact of urban trees onozone, Atmos. Environ., 34, 1601–1613, 2000. 
[3] Coulter, R. L.: A Comparison of three methods for measuring mixing-layerheight, J. Appl. Meteorol., 18, 1495–1499, 1979. 
[4] Oke, T. R.: The heat island of the urban boundary layer: Characteristics,causes and effects, Nato Adv. Sci. Inst. Se., 277, 81–107, 1995. 
[5] Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, 1982. 
[6] Zhu, X., Tang, G., Guo, J., Hu, B., Song, T., Wang, L., Xin, J., Gao, W., Münkel, C., Schäfer, K., Li, X., and Wang, Y.: Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei, Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, 2018. 
[7] Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.:Urban heat islands in China enhanced by haze pollution, Nat.Commun., 7, 1–7, 2016. 
[8] Cardelino, C. A. and Chameides, W. L.: Natural hydrocarbons, urbanization,and urban ozone, J. Geophys. Res., 95, 13971, https://doi.org/10.1029/JD095iD09p13971, 1990. 
[9] Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., Liu, Z., Hu, B., Ji, D., Wang, L., Zhu, X., Yan, C., Ehn, M., Gao, W., Pan, Y., Xin, J., Sun, Y., Kerminen, V.-M., Kulmala, M., and Petäjä, T.: Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing, Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, 2020. 
[10] Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicitforecasts of winter precipitation using an improved bulk microphysicsscheme. Part II: Implementation of a new snow parameterization, Mon.Weather Rev., 136, 5095–5115, 2008. 
[11] Zhong, S., Qian, Y., Sarangi, C., Zhao, C., Leung, R., Wang,H., and Yang, B.: Urbanization effect on winter haze in theYangtze River Delta region of China, Geophys. Res. Lett., 45,6710–6718, https://doi.org/10.1029/2018GL077239, 2018. 
[12] Chen, H. and Wang, H.: Haze Days in North China and the associatedatmospheric circulations based on daily visibility data from 1960 to 2012,J. Geophys. Res.-Atmos., 120, 5895–5909, 2015. 
[13] Wang, K., Wang, J., Wang, P., Sparrow, M., Yang, J., and Chen, H.: Influences ofurbanization on surface characteristics as derived from theModerate-Resolution Imaging Spectroradiometer: A case study for the Beijingmetropolitan area, J. Geophys. Res., 112, D22S06,https://doi.org/10.1029/2006jd007997, 2007. 
[14] Liu, Q., Geng, H., and Chen, Y.: Vertical distribution of aerosols duringdifferent intense dry haze period around Shanghai, China EnvironmentalScience, 32, 207–213, 2012 (in Chinese). 
[15] Miao, S. and Chen, F.: Enhanced modeling of latent heat flux from urbansurfaces in the Noah/single-layer urban canopy coupled model, Sci. ChinaEarth Sci., 57, 2408–2416, 2014. 
[16] Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017. 
[17] Miao, S., Dou J., Chen, F., Li, J., and Li, A.: Analysis of observations onthe urban surface energy balance in Beijing, Sci. China EarthSci., 55, 1881–1890, 2012. 
[18] Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozonein urban areas and their use in assessing ozone trends, Atmos.Environ., 41, 7127–7137, 2007. 
[19] Tao, W., Liu, J., Ban-Weiss, G. A., Hauglustaine, D. A., Zhang, L., Zhang, Q., Cheng, Y., Yu, Y., and Tao, S.: Effects of urban land expansion on the regional meteorology and air quality of eastern China, Atmos. Chem. Phys., 15, 8597–8614, https://doi.org/10.5194/acp-15-8597-2015, 2015. 
[20] Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016. 
[21] Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015. 
[22] Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential ofurban trees and shrubs, Atmos. Environ., 32, 53–68, 1998. 
[23] Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysisrate coefficient and temperature profiles over an urban airshed, J.Geophys. Res., 103, 10593–10604, 1998. 
[24] Kain, J. S.: The Kain–Fritsch convective parameterization: An update,J. Appl. Meteorol., 43, 170–181, 2004. 
[25] Li, D. and Bou-Zeid, E.: Synergistic interaction between urban heat islandsand heat waves: the impact in cities is larger than the sum of its parts, J.Appl. Meteorol. Clim., 52, 2051–2064, 2013. 
[26] Yu, M., Liu, Y. M., Dai, Y. F., and Yang, A.: Impact of urbanization on boundarylayer structure in Beijing, Climatic Change, 120, 123–136, 2013. 
[27] Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, andanthropogenic heat, Energ. Buildings, 25, 99–103, 1997. 
[28] Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019. 
[29] Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of organic aerosol:bridging the gap between laboratory and field studies, Ann. Rev. Phys.Chem., 58, 321–352, 2007. 
[30] Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., and Winker,D. M.: Summer dust aerosols detected from CALIPSO over the TibetanPlateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938,2007. 
[31] Zhang, Z., Zhao, X., Xiong, Y., and Ma, X. H.: The Fog/Haze Medium-rangeForecast Experiments Based on Dynamic Statistic Method, J. Appl.Meteorol. Sci., 29, 57–69, 2018 (in Chinese). 
[32] Zhang, C., Liu, C., Hu, Q., Cai, Z., Su, W., Xia, C., and Liu, J.:Satellite UV-Vis spectroscopy: implications for air quality trends and theirdriving forces in China during 2005–2017, Light-Sci. Appl.,8, 1–12, 2019. 
[33] Skamarock, W.C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Wang, W., and Powers,J. G.: A description of the advanced research WRF version 3, NCAR/TN-475 +STR, 2008. 
[34] Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016. 
[35] Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: Theimpact of relative humidity onaerosol composition and evolution processes during wintertime in Beijing,China, Atmos.Environ., 77, 927–934, 2013. 
[36] Zhang, W., Zhuang, G., Guo, J., Xu, D., Wang, W., and Baumgardner,D., and Yang, W.: Sources of aerosol as determined fromelemental composition and size distributions in Beijing, Atmos.Res., 95, 197–209, https://doi.org/10.1016/j.atmosres.2009.09.017, 2010. 
[37] Grimmond, S. U. E.: Urbanization and global environmental change: localeffects of urban warming, Geogr. J., 173, 83–88, 2007. 
[38] Folberth, G. A., Rumbold, S. T., Collins, W. J., and Butler, T. M.: Globalradiative forcing and megacities, Urban Climate, 1, 4–19, 2014. 
[39] Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., andAyers, J. K.: Long-range transport and vertical structure of Asian dust fromCALIPSO and surface measurements during PACDEX, J. Geophys.Res., 113, D23212, https://doi.org/10.1029/2008JD010620, 2008a. 
[40] Huang, J., Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z.,Yang, S., Zhang, B., Wang, G., Feng, G., Yuan, J., Zhang, L., Zuo, H., Wang, S., Fu, C.,and Chou, J.: An overview of the semi-arid climate and environment researchobservatory over the Loess Plateau, Adv. Atmos. Sci., 25,1–16, https://doi.org/10.1007/s00376-008-0906-7, 2008b. 
[41] Yu, M., Miao, S., and Li, Q.: Synoptic analysis and urban signatures of aheavy rainfall on 7 August 2015 in Beijing, J. Geophys. Res.-Atmos., 122, 65–78, https://doi.org/10.1002/2016JD025420,2017. 
[42] Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package withan explicit treatment of entrainment processes, Mon. Weather Rev., 134,2318–2341, 2006. 
[43] Zhao, P. S., Xu, X. F., Meng, W., Dong, F., and Zhang, X. L.:Characteristics of haze days in the region of Beijing, Tianjin, and Hebei,China Environmental Science, 31, 31–36, 2012 (in Chinese). 
[44] Ren, Y., Zhang, H., Wei, W., Wu, B., Cai, X., and Song, Y.: Effects of turbulence structure and urbanization on the heavy haze pollution process, Atmos. Chem. Phys., 19, 1041–1057, https://doi.org/10.5194/acp-19-1041-2019, 2019. 
[45] Wu, D., Wu, X, Li, F., Tan, H., Chen, J, Cao, Z., Sun, X., Chen, H., and Li, H.: Temporal and spatial variation of haze during1951–2005 in Chinese mainland, Acta Meteorolgica Sinica, 68, 680–688, 2010 (inChinese). 
[46] Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., Wang, T., Li, Q., Shi, C., Ning, G., and Li, Y.:PM2.5 pollution modulates wintertime urban heat island intensity in theBeijing-Tianjin-Hebei Megalopolis, China, Geophys. Res. Lett.,47, GL084288, https://doi.org/10.1029/2019GL084288, 2020. 
[47] Xu, X., Chen, F., Barlage, M., Gochis, D., Miao, S., and Shen, S.: Lessonslearned from modeling irrigation from field to regional scales, J.Adv. Model. Earth Sy., 11, 2428–2448,https://doi.org/10.1029/2018MS001595, 2019. 
[48] Pei, L., Yan, Z., Chen, D., and Miao, S.: Climate variability oranthropogenic emissions: which caused Beijing Haze?, Environ. Res.Lett., 15, 034004, https://doi.org/10.1088/1748-9326/ab6f11, 2020. 
[49] Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X.-Q., and Liu, D.: Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China, Atmos. Chem. Phys., 17, 5439–5457, https://doi.org/10.5194/acp-17-5439-2017, 2017. 
[50] Zhong, S., Qian, Y., Zhao, C., Leung, R., and Yang, X. Q.: A case study ofurbanization impact on summer precipitation in the Greater BeijingMetropolitan Area: Urban heat island versus aerosol effects, J.fGeophys. Res.-Atmos., 120, 10903–10914,https://doi.org/10.1002/2015JD023753, 2015. 
[51] Fan, S.: Assessment report of regional high resolution model (RMAPS-ST), IUMTechnical Note IUM/2018-1, Beijing, China, IUM, 2018. 
[52] Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.:Characteristics of heavy aerosol pollution during the 2012–2013 winter inBeijing, China, Atmos. Environ., 88, 83–89, 2014. 
[53] Zhao, X. J., Li, Z. M., and Xu, J.: Modification and performance tests ofvisibility parameterizations for haze days, Environmental Science, 40,1688–1696, 2019 (in Chinese). 
[54] Crutzen, P. J.: New directions: the growing urban heat and pollution“island” effect-impact on chemistry and climate, Atmos. Environ., 38,3539–3540, 2004. 
文献评价指标
浏览 93次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次