首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 16 ,2020-08-21
Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere
Yibei Wan 1 Xiangpeng Huang 2 Bin Jiang 3 Binyu Kuang 4 Manfei Lin 4 Deming Xia 5 Yuhong Liao 3 Jingwen Chen 5 Jian Zhen Yu 4 Huan Yu 1
Show affiliations
DOI:10.5194/acp-20-9821-2020
PDF
摘要

Unlike the deep understanding of highly oxygenated organic molecules (HOMs) driving continental new particle formation (NPF), little is known about the organic compounds involved in coastal and open-ocean NPF. On the coastline of China we observed intense coastal NPF events initiated by iodine nucleation, but particle growth to cloud condensation nuclei (CCN) sizes was dominated by organic compounds. This article reveals a new group of C18,30HhOoNn and C20,24,28,33HhOo compounds with specific double-bond equivalents and oxygen atom numbers in new sub 20 nm coastal iodine particles by using ultrahigh-resolution Fourier transform–ion cyclotron resonance mass spectrometry (FT-ICR-MS). We proposed these compounds are oxygenated or nitrated products of long-chain unsaturated fatty acids, fatty alcohols, nonprotein amino acids or amino alcohols emitted mutually with iodine from coastal biota or biologically active sea surface. Group contribution method estimated that the addition of –ONO2, –OH and –C=O groups to the precursors reduced their volatility by 2–7 orders of magnitude and thus made their products condensable onto new iodine particles in the coastal atmosphere. Nontarget MS analysis also provided a list of 440 formulas of iodinated organic compounds in size-resolved aerosol samples during the iodine NPF days, which facilitates the understanding of unknown aerosol chemistry of iodine.

授权许可

Copyright: © 2020 Yibei Wan et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Yibei Wan,Xiangpeng Huang,Bin Jiang,Binyu Kuang,Manfei Lin,Deming Xia,Yuhong Liao,Jingwen Chen,Jian Zhen Yu,Huan Yu. Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere. Atmospheric Chemistry and Physics ,Vol.20, Issue 16(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Yao, L., Wang, M.-Y., Wang, X.-K., Liu, Y.-J., Chen, H.-F., Zheng, J., Nie, W., Ding, A.-J., Geng, F.-H., Wang, D.-F., Chen, J.-M., Worsnop, D. R., and Wang, L.: Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions, Atmos. Chem. Phys., 16, 14527–14543, https://doi.org/10.5194/acp-16-14527-2016, 2016. 
[2] Dall'Osto, M., Simo, R., Harrison, R. M., Beddows, D. C. S.,Saiz-Lopez, A., Lange, R., Skov, H., Nøjgaard, J. K., Nielsen, I. E., andMassling, A.: Abiotic and biotic sources influencing spring new particleformation in North East Greenland, Atmos. Environ., 190, 126–134,https://doi.org/10.1016/j.atmosenv.2018.07.019, 2018. 
[3] Li, D. F., Chen, D. P., Liu, F. Y., and Wang, W. L.: Role of glycine onsulfuric acid-ammonia clusters formation: Transporter or participator, J.Environ. Sci., 89, 125–135, https://doi.org/10.1016/j.jes.2019.10.009, 2020. 
[4] Yassine, M. M., Harir, M., Dabek, E., and Schmitt-Kopplin, P.: Structuralcharacterization of organic aerosol using Fourier transform ion cyclotronresonance mass spectrometry: Aromaticity equivalent approach, Rapid. Commun.Mass. Sp., 28, 2445–2454, https://doi.org/10.1002/rcm.7038, 2014. 
[5] Dawczynski, C., Schubert, R., and Jahreis, G.: Amino acids, fatty acids, anddietary fibre in edible seaweed products, Food. Chem., 103, 891–899,https://doi.org/10.1016/j.foodchem.2006.09.041, 2007. 
[6] Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, 2008. 
[7] Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L. J., von Glasow,R., Gómez Martín, J. C., McFiggans, G., and Saunders, R. W.:Atmospheric Chemistry of Iodine, Chem. Rev., 112, 1773–1804,https://doi.org/10.1021/cr200029u, 2012. 
[8] An, Y., Xu, J., Feng, L., Zhang, X., Liu, Y., Kang, S., Jiang, B., and Liao, Y.: Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 1115–1128, https://doi.org/10.5194/acp-19-1115-2019, 2019. 
[9] O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H.,Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.:Marine aerosol formation from biogenic iodine emissions, Nature, 417,632–636, https://doi.org/10.1038/nature00775, 2002. 
[10] Schum, S. K., Zhang, B., Džepina, K., Fialho, P., Mazzoleni, C., and Mazzoleni, L. R.: Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging, Atmos. Chem. Phys., 18, 14017–14036, https://doi.org/10.5194/acp-18-14017-2018, 2018. 
[11] Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. 
[12] Ning, C. P., Gao, Y., Zhang, H. J., Yu, H. R., Wang, L., Geng, N. B., Cao,R., and Chen, J. P.: Molecular characterization of dissolved organic mattersin winter atmospheric fine particulate matters (PM2.5) from a coastal cityof northeast China, Sci. Total. Environ., 689, 312–321,https://doi.org/10.1016/j.scitotenv.2019.06.418, 2019. 
[13] Kumar, M., Saiz-Lopez, A., and Francisco, J. S.: Single-Molecule CatalysisRevealed: Elucidating the Mechanistic Framework for the Formation and Growthof Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous SurfaceEnvironments, J. Am. Chem. Soc., 140, 14704–14716, https://doi.org/10.1021/jacs.8b07441,2018. 
[14] Schmitt-Kopplin, P., Liger-Belair, G., Koch, B. P., Flerus, R., Kattner, G., Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., and Gebefügi, I.: Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols, Biogeosciences, 9, 1571–1582, https://doi.org/10.5194/bg-9-1571-2012, 2012. 
[15] Daellenbach, K. R., Kourtchev, I., Vogel, A. L., Bruns, E. A., Jiang, J., Petäjä, T., Jaffrezo, J.-L., Aksoyoglu, S., Kalberer, M., Baltensperger, U., El Haddad, I., and Prévôt, A. S. H.: Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, 2019. 
[16] Kurtén, T., Loukonen, V., Vehkamäki, H., and Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia, Atmos. Chem. Phys., 8, 4095–4103, https://doi.org/10.5194/acp-8-4095-2008, 2008. 
[17] Yoon, Y. J., O'Dowd, C. D., Jennings, S. G., and Lee, S. H.: Statisticalcharacteristics and predictability of particle formation events at MaceHead, J. Geophys. Res., 111, D13204, https://doi.org/10.1029/2005JD006284, 2006. 
[18] Kourtchev, I., Fuller, S., Aalto, J., Ruuskanen, T. M., McLeod, M. W.,Maenhaut, W., Jones, R., Kulmala, M., and Kalberer, M.: Molecularcomposition of boreal forest aerosol from Hyytiala, Finland, using ultrahighresolution mass spectrometry, Environ. Sci. Technol., 47, 4069–4079,https://doi.org/10.1021/es3051636, 2013. 
[19] Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmos. Chem. Phys., 20, 1183–1199, https://doi.org/10.5194/acp-20-1183-2020, 2020. 
[20] Stevanović, K. Z., Bubanja, I. N. M., and Stanisavljev, D. R.: Is IodineOxidation with Hydrogen Peroxide Coupled with Nucleation Processes?, J.Phys. Chem. C, 123, 16671–16680, https://doi.org/10.1021/acs.jpcc.9b02563, 2019. 
[21] Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J.J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V.,Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P.D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marinebiogenic source of atmospheric ice-nucleating particles, Nature, 525,234–238, https://doi.org/10.1038/nature14986, 2015. 
[22] Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., andWennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J.Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207, 2013. 
[23] Wu, C. H., Yang, J., Fu, Q., Zhu, B., Ruan, T., and Jiang, G. B.: Molecularcharacterization of water-soluble organic compounds in PM2.5 using ultrahighresolution mass spectrometry, Sci. Total. Environ., 668, 917–924,https://doi.org/10.1016/j.scitotenv.2019.03.031, 2019. 
[24] Cochran, R. E., Laskina, O., Trueblood, J. V., Estillore, A. D., Morris, H.S., Jayarathne, T., Sultana, C. M., Lee, C., Lin, P., Laskin, J., Laskin,A., Dowling, J. A., Qin, Z., Cappa, C. D., Bertram, T. H., Tivanski, A. V.,Stone, E. A., Prather, K. A., and Grassian, V. H.: Molecular Diversity ofSea Spray Aerosol Particles: Impact of Ocean Biology on Particle Compositionand Hygroscopicity, Chem. Pharm. Bull, 2, 655–667,https://doi.org/10.1016/j.chempr.2017.03.007, 2017. 
[25] Moss, G. P., Smith, P. A. S., and Tavernier, D.: Glossary of class names oforganic compounds and reactivity intermediates based on structure (IUPACRecommendations 1995), Pure Appl. Chem., 67, 1307–1375, https://doi.org/10.1351/pac199567081307,1995. 
[26] Metzger, A., Verheggen, B., Dommen, J., Duplissy, J., Prevot, A. S. H.,Weingartner, E., Riipinen, I., Kulmala, M., Spracklen, D. V., Carslaw, K.S., and Baltensperger, U.: Evidence for the role of organics in aerosolparticle formation under atmospheric conditions, P. Natl. Acad. Sci. USA, 107, 6646–6651, https://doi.org/10.1073/pnas.0911330107, 2010. 
[27] Saiz-Lopez, A. and Plane, J. M. C.: Novel iodine chemistry in the marineboundary layer, Geophys. Res. Lett., 31, L04112, https://doi.org/10.1029/2003GL019215,2004. 
[28] Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009. 
[29] Hao, Z. N., Yin, Y. G., Cao, D., and Liu, J. F.: Probing and Comparing thePhotobromination and Photoiodination of Dissolved Organic Matter by UsingUltra-High-Resolution Mass Spectrometry, Environ. Sci. Technol., 51,5464–5472, https://doi.org/10.1021/acs.est.6b03887, 2017. 
[30] Mentel, T. F., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., and Wildt, J.: Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships, Atmos. Chem. Phys., 15, 6745–6765, https://doi.org/10.5194/acp-15-6745-2015, 2015. 
[31] Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.S.: Carbohydrate-like composition of submicron atmospheric particles andtheir production from ocean bubble bursting, P. Natl. Acad. Sci. USA, 107, 6652, https://doi.org/10.1073/pnas.0908905107, 2010. 
[32] Kim, K. R. and Oh, D. K.: Production of hydroxy fatty acids by microbialfatty acid-hydroxylation enzymes, Biotechnol. Adv., 31, 1473–1485,https://doi.org/10.1016/j.biotechadv.2013.07.004, 2013. 
[33] Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H.,Kontkanen, J., Richters, S., Kangasluoma, J., Franchin, A.,Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H., Kurten,T., Berndt, T., Petäjä, T., Worsnop, D., Ceburnis, D., Kerminen,V.-M., Kulmala, M., and O'Dowd, C.: Molecular-scale evidence of aerosolparticle formation via sequential addition of HIO3, Nature, 537, 532–534,https://doi.org/10.1038/nature19314, 2016. 
[34] Kendel, M., Barnathan, G., Fleurence, J., Rabesaotra, V., andWielgosz-Collin, G.: Non-methylene Interrupted and Hydroxy Fatty Acids inPolar Lipids of the Alga Grateloupia turuturu Over the Four Seasons,Lipids, 48, 535–545, https://doi.org/10.1007/s11745-013-3783-5, 2013. 
[35] Roscoe, H. K., Jones, A. E., Brough, N., Weller, R., Saiz-Lopez, A.,Mahajan, A. S., Schoenhardt, A., Burrows, J. P., and Fleming, Z. L.:Particles and iodine compounds in coastal Antarctica, J. Geophys.Res.-Atmos., 120, 7144–7156, https://doi.org/10.1002/2015JD023301, 2015. 
[36] Burkholder, J. B., Curtius, J., Ravishankara, A. R., and Lovejoy, E. R.: Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys., 4, 19–34, https://doi.org/10.5194/acp-4-19-2004, 2004. 
[37] Simoneit, B. R. T. and Mazurek, M. A.: Organic matter of thetroposphere – II. For Part I, see Simoneit et al. (1977). Naturalbackground of biogenic lipid matter in aerosols over the rural westernunited states, Atmos. Environ., 16, 2139–2159,https://doi.org/10.1016/0004-6981(82)90284-0, 1982. 
[38] Ishijima, H., Uchida, R., Ohtawa, M., Kondo, A., Nagai, K., Shima, K.,Nonaka, K., Masuma, R., Iwamoto, S., Onodera, H., Nagamitsu, T., and Tomoda,H.: Simplifungin and Valsafungins, Antifungal Antibiotics of Fungal Origin,J. Org. Chem., 81, 7373–7383, https://doi.org/10.1021/acs.joc.6b00952, 2016. 
[39] Yang, Y. J., Peng, Y. E., Chang, Q., Dan, C. H., Guo, W., and Wang, Y. X.:Selective Identification of Organic Iodine Compounds Using LiquidChromatography–High Resolution Mass Spectrometry, Anal. Chem., 88,1275–1280, https://doi.org/10.1021/acs.analchem.5b03694, 2016. 
[40] Jares-Erijman, E. A., Bapat, C. P., Lithgow-Bertelloni, A., Rinehart, K. L.,and Sakai, R.: Crucigasterins, new polyunsaturated amino alcohols from themediterranean tunicate Pseudodistoma crucigaster, J. Org. Chem., 58,5732–5737, https://doi.org/10.1021/jo00073a036, 1993. 
[41] Jiang, B., Kuang, B. Y., Liang, Y. M., Zhang, J. Y., Huang, X. H. H., Xu, C.M., Yu, J., and Shi, Q.: Molecular composition of urban organic aerosols onclear and hazy days in Beijing: A comparative study using FT-ICR MS,Environ. Chem., 13, 888–901, https://doi.org/10.1071/EN15230, 2016. 
[42] Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kürten, A., Rörup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P. S., Beck, L., Bergen, A., Bianchi, F., Bräkling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D. C., Duplissy, J., El-Haddad, I., Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L., Gordon, H., Granzin, M., Hakala, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kong, W., Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Manninen, H. E., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L. L. J., Ranjithkumar, A., Rissanen, M. P., Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A. R., Vazquez-Pufleau, M., Vogel, A. L., Wagner, R., Wang, M., Wang, D. S., Wang, Y., Weber, S. K., Wu, Y., Xiao, M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Baltensperger, U., Dommen, J., Flagan, R. C., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular understanding of new-particle formation from α-pinene between −50 and +25C, Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, 2020. 
[43] Jen, C. N., McMurry, P. H., and Hanson, D. R.: Stabilization of SulfuricAcid Dimers by Ammonia, Methylamine, Dimethylamine, and Trimethylamine, J.Geophys. Res-Atmos., 119, 7502–7514, https://doi.org/10.1002/2014JD021592, 2014. 
[44] Xie, Q., Su, S., Chen, S., Xu, Y., Cao, D., Chen, J., Ren, L., Yue, S., Zhao, W., Sun, Y., Wang, Z., Tong, H., Su, H., Cheng, Y., Kawamura, K., Jiang, G., Liu, C.-Q., and Fu, P.: Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, 2020. 
[45] Calvert, J. G., Atkinson, R. G., Orlando, J. J., Wallington, T. J., andTyndall, G. S.: The Mechanisms of Atmospheric Oxidation of Alkenes, OxfordUniv. Press, Oxford, UK, 2000. 
[46] Wang, Y., Riva, M., Xie, H., Heikkinen, L., Schallhart, S., Zha, Q., Yan, C., He, X.-C., Peräkylä, O., and Ehn, M.: Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene, Atmos. Chem. Phys., 20, 5145–5155, https://doi.org/10.5194/acp-20-5145-2020, 2020. 
[47] Blokker, P., Schouten, S., van den Ende, H., De Leeuw, J. W., and SinningheDamsté, J. S.: Cell wall-specific ω-hydroxy fatty acids in somefreshwater green microalgae, Phytochemistry, 49, 691–695,https://doi.org/10.1016/S0031-9422(98)00229-5, 1998. 
[48] Vereecken, L., Glowacki, D. R., and Pilling, M. J.: Theoretical ChemicalKinetics in Tropospheric Chemistry: Methodologies and Applications, Chem.Rev., 115, 4063–4114, https://doi.org/10.1021/cr500488p, 2015. 
[49] Volkman, J. K., Barrett, S. M., Dunstan, G. A., and Jeffrey, S. W.: C30–C32alkyl diols and unsaturated alcohols in microalgae of the classEustigmatophyceae, Org. Geochem., 18, 131–138,https://doi.org/10.1016/0146-6380(92)90150-V, 1992. 
[50] Ge, P., Luo, G., Luo, Y., Huang, W., Xie, H. B., Chen, J. W., and Qu, J. P.:Molecular understanding of the interaction of amino acids with sulfuric acidin the presence of water and the atmospheric implication, Chemosphere, 210,215–223, https://doi.org/10.1016/j.chemosphere.2018.07.014, 2018. 
[51] Bikkina, P., Kawamura, K., Bikkina, S., Kunwar, B., Tanaka, K., and Suzuki,K.: Hydroxy Fatty Acids in Remote Marine Aerosols over the Pacific Ocean:Impact of Biological Activity and Wind Speed, ACS Earth. Space. Chem., 3,366–379, https://doi.org/10.1021/acsearthspacechem.8b00161, 2019. 
[52] Mazzoleni, L. R., Saranjampour, P., Dalbec, M. M., Samburova, V., Hallar, G.A., Zielinska, B., Lowenthal, D. H., and Kohl, S.: Identification ofwater-soluble organic carbon in non-urban aerosols usingultrahigh-resolution FT-ICR mass spectrometry: Organic anions, Environ.Chem., 9, 285–297, https://doi.org/10.1071/EN11167, 2012. 
[53] Řezanka, T. and Podojil, M.: The very long chain fatty acids of thegreen alga, Chlorella kessleri, Lipids, 19, 472, https://doi.org/10.1007/BF02537412,1984. 
[54] Zhao, R., Kenseth, C. M., Huang, Y., Dalleska, N. F., and Seinfeld, J. H.:Iodometry-assisted liquid chromatography electrospray ionization massspectrometry for analysis of organic peroxides – an application toatmospheric secondary organic aerosol, Environ. Sci. Technol., 52,2108–2117, 2018b. 
[55] Richters, S., Herrmann, H., and Berndt, T.: Highly Oxidized RO2 Radicals andConsecutive Products from the Ozonolysis of Three Sesquiterpenes, Environ.Sci. Technol., 50, 2354–2362, https://doi.org/10.1021/acs.est.5b05321, 2016. 
[56] Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,B. R. T.: Sources of fine organic aerosol. 1. Charbroilers and meat cookingoperations, Environ. Sci. Technol., 25, 1112–1125, https://doi.org/10.1021/es00018a015,1991. 
[57] Zheng, M., Fang, M., Wang, F., and To, K. L.: Characterization of thesolvent extractable organic compounds in PM2.5 aerosols in Hong Kong, Atmos.Environ., 34, 2691–2702, https://doi.org/10.1016/S1352-2310(99)00521-X, 2000. 
[58] Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surfacecarbon pool to organic matter enrichment in sea spray aerosol, Nat. Geosci.,7, 228–232, https://doi.org/10.1038/ngeo2092, 2014. 
[59] Zuth, C., Vogel, A. L., Ockenfeld, S., Huesmann, R., and Hoffmann, T.:Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric PressureChemical Ionization Orbitrap Mass Spectrometry of Atmospheric OrganicAerosol, Anal. Chem., 90, 8816–8823, https://doi.org/10.1021/acs.analchem.8b00671, 2018. 
[60] Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013. 
[61] Guo, Z. G., Sheng, L. F., Feng, J. L., and Fang, M.: Seasonal variation ofsolvent extractable organic compounds in the aerosols in Qingdao, China,Atmos. Environ., 37, 1825–1834, https://doi.org/10.1016/S1352-2310(03)00064-5, 2003. 
[62] Mahajan, A. S., Gómez Martín, J. C., Hay, T. D., Royer, S.-J., Yvon-Lewis, S., Liu, Y., Hu, L., Prados-Roman, C., Ordóñez, C., Plane, J. M. C., and Saiz-Lopez, A.: Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources, Atmos. Chem. Phys., 12, 11609–11617, https://doi.org/10.5194/acp-12-11609-2012, 2012. 
[63] Willoughby, A. S., Wozniak, A. S., and Hatcher, P. G.: DetailedSource-Specific Molecular Composition of Ambient Aerosol Organic MatterUsing Ultrahigh Resolution Mass Spectrometry and 1H NMR, Atmosphere, 7, 79,https://doi.org/10.3390/atmos7060079, 2016. 
[64] Gelin, F., Volkman, J. K., De Leeuw, J. W., and Sinninghe Damsté, J. S.:Mid-chain hydroxy long-chain fatty acids in microalgae from the genusNannochloropsis, Phytochemistry, 45, 641–646,https://doi.org/10.1016/S0031-9422(97)00068-X, 1997. 
[65] Mäkelä, J. M., Hoffmann, T., Holzke, C., Väkevä, M., Suni,T., Mattila, T., Aalto, P. P., Tapper, U., Kauppinen, E. I., and O'Dowd, C.D., Biogenic iodine emissions and identification of end-products in coastalultrafine particles during nucleation bursts, J. Geophys. Res., 107,8110, https://doi.org/10.1029/2001JD000580, 2002. 
[66] Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Reaction of OHwith Dimethyl Sulfide (DMS). 1. Equilibrium Constant for OH + DMS Reactionand the Kinetics of the OH DMS +O2 Reaction, J. Phys. Chem.A, 100, 14694–14702, https://doi.org/10.1021/jp960866k, 1996. 
[67] Ge, X. L., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. Areview, Atmos. Environ., 45, 524–546, https://doi.org/10.1016/j.atmosenv.2010.10.012,2011. 
[68] Bianco, A., Deguillaume, L., Vaïtilingom, M., Nicol, E., Baray, J.-L.,Chaumerliac, N., and Bridoux, M.: Molecular Characterization of Cloud WaterSamples Collected at the Puy de Dôme (France) by Fourier Transform IonCyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52,10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018. 
[69] Mansour, M. P., Volkman, J. K., Holdsworth, D. G., Jackson, A. E., andBlackburn, S. I.: Very-long-chain (C28) highly unsaturated fatty acids inmarine dinoflagellates, Phytochemistry, 50, 541–548,https://doi.org/10.1016/S0031-9422(98)00564-0, 1999. 
[70] Vaattovaara, P., Huttunen, P. E., Yoon, Y. J., Joutsensaari, J., Lehtinen, K. E. J., O'Dowd, C. D., and Laaksonen, A.: The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution, Atmos. Chem. Phys., 6, 4601–4616, https://doi.org/10.5194/acp-6-4601-2006, 2006. 
[71] Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl Sulfide and DimethylSulfoxide and Their Oxidation in the Atmosphere, Chem. Rev., 106, 940–975,https://doi.org/10.1021/cr020529+, 2006. 
[72] Tsukamoto, D., Shibano, M., and Kusano, G.: Studies on the Constituents ofBroussonetia Species X. Six New Alkaloids from Broussonetia kazinoki SIEB,Chem. Pharm. Bull., 49, 1487–1491, https://doi.org/10.1248/cpb.49.1487, 2001. 
[73] DeMott, P. J., Mason, R. H., McCluskey, C. S., Hill, T. C. J., Perkins, R.J., Desyaterik, Y., Bertram, A. K., Trueblood, J. V., Grassian, V. H., Qiu,Y., Molinero, V., Tobo, Y., Sultana, C. M., Lee, C., and Prather, K. A.: Icenucleation by particles containing long-chain fatty acids of relevance tofreezing by sea spray aerosols, Environ. Sci-Proc. Imp., 20, 1559–1569,https://doi.org/10.1039/c8em00386f, 2018. 
[74] Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W., Saiz-Lopez, A., Jones, C. E., Carpenter, L. J., and McFiggans, G. B.: Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 4611–4624, https://doi.org/10.5194/acp-10-4611-2010, 2010. 
[75] Pospisilova, V., Lopez-Hilfiker, F. D., Bell, D. M., El Haddad, I., Mohr,C., Huang, W., Heikkinen, L., Xiao, M., Dommen, J., Prevot, A. S. H.,Baltensperger, U., and Slowik, J. G.: On the fate of oxygenated organicmolecules in atmospheric aerosol particles, Sci. Adv., 6, 1–12,https://doi.org/10.1126/sciadv.aax8922, 2020. 
[76] Yu, H., Ren, L., Huang, X., Xie, M., He, J., and Xiao, H.: Iodine speciation and size distribution in ambient aerosols at a coastal new particle formation hotspot in China, Atmos. Chem. Phys., 19, 4025–4039, https://doi.org/10.5194/acp-19-4025-2019, 2019. 
[77] Pratt, K. A. and Prather, K. A.: Mass spectrometry of atmosphericaerosols–recent developments and applications. Part I: Off-line massspectrometry techniques, Mass. Spectrom. Rev., 31, 1–16,https://doi.org/10.1002/mas.20322, 2012. 
[78] VanMiddlesworth, F., Giacobbe, R. A., Lopez, M., Garrity, G., Bland, J.,Bartizal, K., Fromtling, R. A., Polishook, J., Zweerink, M., and Edison, A.M.: Sphingofungins A, B, C, and D; a new family of antifungal agents. I.Fermentation, isolation, and biological activity, J. Antibiot., 45, 861–867,1992. 
[79] Yu, H.: Organic Compounds Dataset Detected by High Resolution Mass Spectrometer in Ambient Aerosols from the Coastal Atmosphere of Zhejiang, China [DB/J], Global Change Data Repository, https://doi.org/10.3974/geodb.2020.03.26.V1, 2020. 
[80] Zhao, R., Kenseth, C. M., Huang, Y., Dalleska, N. F., Kuang, X. M., Chen,J., Paulson, S. E., and Seinfeld, J. H.: Rapid Aqueous-Phase Hydrolysis ofEster Hydroperoxides Arising from Criegee Intermediates and Organic Acids.J. Phys. Chem. A, 122, 5190–5201, https://doi.org/10.1021/acs.jpca.8b02195, 2018a. 
[81] Pollard, M., Beisson, F., Li, Y., and Ohlrogge, J. B.: Building lipidbarriers: biosynthesis of cutin and suberin, Trends. Plant. Sci., 13,236–246, https://doi.org/10.1016/j.tplants.2008.03.003, 2008. 
[82] Peräkylä, O., Riva, M., Heikkinen, L., Quéléver, L., Roldin, P., and Ehn, M.: Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs) , Atmos. Chem. Phys., 20, 649–669, https://doi.org/10.5194/acp-20-649-2020, 2020. 
[83] Yvon, S. A., Saltzman, E. S., Cooper, D. J., Bates, T. S., and Thompson, A.M.: Atmospheric sulfur cycling in the tropical Pacific marine boundary layer(12 S, 135 W): A comparison of field data and modelresults: 1. Dimethylsulfide, J. Geophys. Res.-Atmos., 101, 6899–6909,https://doi.org/10.1029/95JD03356, 1996. 
[84] Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental Compositionof HULIS in the Pearl River Delta Region, China: Results Inferred fromPositive and Negative Electrospray High Resolution Mass Spectrometric Data,Environ. Sci. Technol., 46, 7454–7462, https://doi.org/10.1021/es300285d, 2012. 
[85] Bao, H. Y., Niggemann, J., Li, L., Dittmar, T., and Kao, S.-J.: Molecularcomposition and origin of water-soluble organic matter in marine aerosols inthe Pacific off China, Atmos. Environ., 191, 27–35,https://doi.org/10.1016/j.atmosenv.2018.07.059, 2018. 
[86] Elm, J., Fard, M., Bilde, M., and Mikkelsen, K. V.: Interaction of Glycinewith Common Atmospheric Nucleation Precursors, J. Phys. Chem. A, 117,12990–12997, https://doi.org/10.1021/jp408962c, 2013. 
[87] Draxler, R. and Rolph, G.: HYSPLIT (HYbrid Single-Particle LagrangianIntegrated Trajectory) model access via NOAA ARL READY website, NOAA Air Resources Laboratory,Silver Spring, MD, available at:http://ready.arl.noaa.gov/HYSPLIT.php (last access: 30 March 2020), 2010. 
[88] Atkinson, R., Tuazon, E. C., and Aschmann, S. M.: Products of the Gas-PhaseReactions of a Series of 1-Alkenes and 1-Methylcyclohexene with the OHRadical in the Presence of NO, Environ. Sci. Technol., 29, 1674–1680,https://doi.org/10.1021/es00006a035, 1995. 
[89] Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen,I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F.,Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S.,Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B.,Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T.,Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt,J., and Mentel, T. F.: A large source of low-volatility secondary organicaerosol, Nature, 506, 476–479, https://doi.org/10.1038/nature13032, 2014. 
[90] Litchfield, C., Greenberg, A. J., Noto, G., and Morales, R. W.: Unusuallyhigh levels of C24–C30 fatty acids in sponges of the class demospongiae,Lipids, 11, 567–570, https://doi.org/10.1007/BF02532903, 1976. 
文献评价指标
浏览 71次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次