首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 16 ,2020-08-27
Molecular insights into new particle formation in Barcelona, Spain
James Brean 1 David C. S. Beddows 1 Zongbo Shi 1 Brice Temime-Roussel 2 Nicolas Marchand 2 Xavier Querol 3 Andrés Alastuey 3 María Cruz Minguillón 3 Roy M. Harrison 1 , 4
Show affiliations

Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in north-eastern Spain utilising particle counting instruments down to 1.9 nm and a Nitrate Chemical Ionisation Atmospheric Pressure interface Time of Flight Mass Spectrometer (CI-APi-ToF). The rate of formation of new particles is seen to increase linearly with sulfuric acid concentration, although particle formation rates fall short of chamber studies of H2SO4–DMA–H2O while exceeding those of H2SO4–BioOxOrg–H2O nucleation, although a role of highly oxygenated molecules (HOMs) cannot be ruled out. The sulfuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulfuric acid and dimethylamine (DMA) in chambers, indicating that stabilisation of sulfuric acid clusters by bases is weaker in this dataset than in chambers, either due to rapid evaporation due to high summertime temperatures or limited pools of stabilising amines. Such a mechanism cannot be verified in these data, as no higher-order H2SO4–amine clusters nor H2SO4–HOM clusters were measured. The high concentrations of HOMs arise from isoprene, alkylbenzene, monoterpene and polycyclic aromatic hydrocarbon (PAH) oxidation, with alkylbenzenes providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on temperature. The organic compounds measured primarily fall into the semivolatile organic compound (SVOC) volatility class arising from alkylbenzene and isoprene oxidation. Low-volatility organic compounds (LVOCs) largely arise from oxidation of alkylbenzenes, PAHs and monoterpenes, whereas extremely low-volatility organic compounds (ELVOCs) arise from primarily PAH and monoterpene oxidation. New particle formation without growth past 10 nm is also observed, and on these days oxygenated organic concentrations are lower than on days with growth by a factor of 1.6, and thus high concentrations of low-volatility oxygenated organics which primarily derive from traffic-emitted volatile organic compounds (VOCs) appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation from sulfuric acid–amine reactions in both chambers and the real atmosphere and are likely representative of the urban background of many European Mediterranean cities. A role for HOMs in the nucleation process cannot be confirmed or ruled out, and there is strong circumstantial evidence of the participation of HOMs across multiple volatility classes in particle growth.


Copyright: © 2020 James Brean et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/


James Brean,David C. S. Beddows,Zongbo Shi,Brice Temime-Roussel,Nicolas Marchand,Xavier Querol,Andrés Alastuey,María Cruz Minguillón,Roy M. Harrison. Molecular insights into new particle formation in Barcelona, Spain. Atmospheric Chemistry and Physics ,Vol.20, Issue 16(2020)



[1] Kulmala, M., Kerminen, V. M., Petäjä, T., Ding, A. J., and Wang, L.:Atmospheric gas-to-particle conversion: Why NPF events are observed inmegacities?, Faraday Discuss., 200, 271–288, https://doi.org/10.1039/c6fd00257a, 2017. 
[2] Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H.E., Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P.,Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.:Measurement of the nucleation of atmospheric aerosol particles, Nat.Protoc., 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012. 
[3] Kulmala, M., Dal Maso, M., Mäkelä, J. M., Pirjola, L.,Väkevä, M., Aalto, P., Miikkulainen, P., Hämeri, K., and O'Dowd,C. D.: On the formation, growth and composition of nucleation modeparticles, Tellus B, 53, 479–490,https://doi.org/10.1034/j.1600-0889.2001.d01-33.x, 2001. 
[4] Rissanen, M. P.: NO2 Suppression of Autoxidation-Inhibition ofGas-Phase Highly Oxidized Dimer Product Formation, ACS Earth Space Chem.,2, 1211–1219, https://doi.org/10.1021/acsearthspacechem.8b00123, 2018. 
[5] Rose, C., Zha, Q., Dada, L., Yan, C., Lehtipalo, K., Junninen, H., Mazon, S.B., Jokinen, T., Sarnela, N., Sipilä, M., Petäjä, T., Kerminen,V.-M., Bianchi, F., and Kulmala, M.: Observations of biogenic ion-inducedcluster formation in the atmosphere, Sci. Adv., 4, 5218,https://doi.org/10.1126/sciadv.aar5218, 2018. 
[6] Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmos. Chem. Phys., 20, 1183–1199, https://doi.org/10.5194/acp-20-1183-2020, 2020. 
[7] Paasonen, P., Olenius, T., Kupiainen, O., Kurtén, T., Petäjä, T., Birmili, W., Hamed, A., Hu, M., Huey, L. G., Plass-Duelmer, C., Smith, J. N., Wiedensohler, A., Loukonen, V., McGrath, M. J., Ortega, I. K., Laaksonen, A., Vehkamäki, H., Kerminen, V.-M., and Kulmala, M.: On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation, Atmos. Chem. Phys., 12, 9113–9133, https://doi.org/10.5194/acp-12-9113-2012, 2012. 
[8] Miller, M. R., Raftis, J. B., Langrish, J. P., McLean, S. G., Samutrtai, P.,Connell, S. P., Wilson, S., Vesey, A. T., Fokkens, P. H. B., Boere, A. J.F., Krystek, P., Campbell, C. J., Hadoke, P. W. F., Donaldson, K., Cassee,F. R., Newby, D. E., Duffin, R., and Mills, N. L.: Inhaled NanoparticlesAccumulate at Sites of Vascular Disease, ACS Nano, 11, 4542–4552,https://doi.org/10.1021/acsnano.6b08551, 2017. 
[9] Jen, C. N., Zhao, J., McMurry, P. H., and Hanson, D. R.: Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines, Atmos. Chem. Phys., 16, 12513–12529, https://doi.org/10.5194/acp-16-12513-2016, 2016. 
[10] Dall'Osto, M., Querol, X., Alastuey, A., O'Dowd, C., Harrison, R. M., Wenger, J., and Gómez-Moreno, F. J.: On the spatial distribution and evolution of ultrafine particles in Barcelona, Atmos. Chem. Phys., 13, 741–759, https://doi.org/10.5194/acp-13-741-2013, 2013. 
[11] Millán, M.: Extreme hydrometeorological events and climate changepredictions in Europe, J. Hydrol., 518, 206–224,https://doi.org/10.1016/j.jhydrol.2013.12.041, 2014. 
[12] Ortega, I. K., Olenius, T., Kupiainen-Määttä, O., Loukonen, V., Kurtén, T., and Vehkamäki, H.: Electrical charging changes the composition of sulfuric acid–ammonia/dimethylamine clusters, Atmos. Chem. Phys., 14, 7995–8007, https://doi.org/10.5194/acp-14-7995-2014, 2014. 
[13] Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303–3318, https://doi.org/10.5194/acp-11-3303-2011, 2011. 
[14] Massoli, P., Stark, H., Canagaratna, M. R., Krechmer, J. E., Xu, L., Ng, N.L., Mauldin, R. L., Yan, C., Kimmel, J., Misztal, P. K., Jimenez, J. L.,Jayne, J. T., and Worsnop, D. R.: Ambient Measurements of Highly OxidizedGas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS)2013, ACS Earth Space Chem., 2, 653–672,https://doi.org/10.1021/acsearthspacechem.8b00028, 2018. 
[15] Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T.,Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M.,Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source oflow-volatility secondary organic aerosol, Nature, 506, 476–479,https://doi.org/10.1038/nature13032, 2014. 
[16] Mikkonen, S., Romakkaniemi, S., Smith, J. N., Korhonen, H., Petäjä, T., Plass-Duelmer, C., Boy, M., McMurry, P. H., Lehtinen, K. E. J., Joutsensaari, J., Hamed, A., Mauldin III, R. L., Birmili, W., Spindler, G., Arnold, F., Kulmala, M., and Laaksonen, A.: A statistical proxy for sulphuric acid concentration, Atmos. Chem. Phys., 11, 11319–11334, https://doi.org/10.5194/acp-11-11319-2011, 2011. 
[17] Hyttinen, N., Kupiainen-Määtta, O.,Rissanen, M. P., Muuronen, M., Ehn, M., and Kurtén, T.: Modeling theCharging of Highly Oxidized Cyclohexene Ozonolysis Products UsingNitrate-Based Chemical Ionization, J. Phys. Chem. A, 119, 6339–6345,https://doi.org/10.1021/acs.jpca.5b01818, 2015. 
[18] IPCC: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the IntergovernmentalPanel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen. S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,Cambridge University Press, Cambridge, 2013. 
[19] Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N.,Junninen, H., Adamov, A., Almeida, J., Amorim, A., Bianchi, F.,Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S.,Flagan, R. C., Franchin, A., Hakala, J., Hansel, A., Heinritzi, M.,Hutterli, M., Kangasluoma, J., Kirkby, J., Laaksonen, A., Lehtipalo, K.,Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T.,Praplan, A. P., Riccobono, F., Rissanen, M. P., Rondo, L., Schobesberger,S., Seinfeld, J. H., Steiner, G., Tomé, A., Tröstl, J., Winkler, P.M., Williamson, C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S.,Kulmala, M., Worsnop, D. R., and Curtius, J.: Neutral molecular clusterformation of sulfuric acid–dimethylamine observed in real time underatmospheric conditions, P. Natl. Acad. Sci. USA, 111, 15019–15024,https://doi.org/10.1073/pnas.1404853111, 2014. 
[20] Pandolfi, M., Amato, F., Reche, C., Alastuey, A., Otjes, R. P., Blom, M. J., and Querol, X.: Summer ammonia measurements in a densely populated Mediterranean city, Atmos. Chem. Phys., 12, 7557–7575, https://doi.org/10.5194/acp-12-7557-2012, 2012. 
[21] Kurtén, T., Noppel, M., Vehkamäki, H., Salonen, M., and Kulmala, M.:Quantum chemical studies of hydrate formation of H2SO4 andHSO4-, Boreal Environ. Res., 12, 431–453, 2007. 
[22] Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, 2018. 
[23] Hutchinson, G. L., Mosier, A. R., and Andre, C. E.: Ammonia and AmineEmissions from a Large Cattle Feedlot, J. Environ. Qual., 11, 288–293,1982. 
[24] Kürten, A., Bergen, A., Heinritzi, M., Leiminger, M., Lorenz, V., Piel, F., Simon, M., Sitals, R., Wagner, A. C., and Curtius, J.: Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany, Atmos. Chem. Phys., 16, 12793–12813, https://doi.org/10.5194/acp-16-12793-2016, 2016. 
[25] Simon, M., Heinritzi, M., Herzog, S., Leiminger, M., Bianchi, F., Praplan, A., Dommen, J., Curtius, J., and Kürten, A.: Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry, Atmos. Meas. Tech., 9, 2135–2145, https://doi.org/10.5194/amt-9-2135-2016, 2016. 
[26] Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M.,Lehtipalo, K., Dommen, J., Ehrhart, S., Ortega, I. K., Franchin, A.,Nieminen, T., Riccobono, F., Hutterli, M., Duplissy, J., Almeida, J.,Amorim, A., Breitenlechner, M., Downard, A. J., Dunne, E. M., Flagan, R. C.,Kajos, M., Keskinen, H., Kirkby, J., Kupc, A., Kürten, A., Kurtén,T., Laaksonen, A., Mathot, S., Onnela, A., Praplan, A. P., Rondo, L.,Santos, F. D., Schallhart, S., Schnitzhofer, R., Sipilä, M., Tomé,A., Tsagkogeorgas, G., Vehkamäki, H., Wimmer, D., Baltensperger, U.,Carslaw, K. S., Curtius, J., Hansel, A., Petäjä, T., Kulmala, M.,Donahue, N. M., and Worsnop, D. R.: Molecular understanding of atmosphericparticle formation from sulphuric acid and large oxidized organicmolecules, P. Natl. Acad. Sci. USA, 110, 17223–17228,https://doi.org/10.1073/pnas.1306973110, 2013. 
[27] Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H.,Kontkanen, J., Richters, S., Kangasluoma, J., Franchin, A.,Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H.,Kürten, T., Berndt, T., Petäjä, T., Worsnop, D., Ceburnis, D.,Kerminen, V. M., Kulmala, M., and O'Dowd, C.: Molecular-scale evidence ofaerosol particle formation via sequential addition of HIO3, Nature,537, 532–534, https://doi.org/10.1038/nature19314, 2016. 
[28] Olin, M., Kuuluvainen, H., Aurela, M., Kalliokoski, J., Kuittinen, N., Isotalo, M., Timonen, H. J., Niemi, J. V., Rönkkö, T., and Dal Maso, M.: Traffic-originated nanocluster emission exceeds H2SO4-driven photochemical new particle formation in an urban area, Atmos. Chem. Phys., 20, 1–13, https://doi.org/10.5194/acp-20-1-2020, 2020. 
[29] Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R.,Stolzenburg, D., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S.,Baumgartner, B., Bergen, A., Bernhammer, A.-K., Breitenlechner, M., Brilke,S., Buchholz, A., Mazon, S. B., Chen, D., Chen, X., Dias, A., Dommen, J.,Draper, D. C., Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L., Frege,C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., He, X., Heikkinen, L.,Heinritzi, M., Helm, J. C., Hofbauer, V., Hoyle, C. R., Jokinen, T.,Kangasluoma, J., Kerminen, V.-M., Kim, C., Kirkby, J., Kontkanen, J.,Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin, R. L., Molteni,U., Nichman, L., Nie, W., Nieminen, T., Ojdanic, A., Onnela, A., Passananti,M., Petäjä, T., Piel, F., Pospisilova, V., Quéléver, L. L.J., Rissanen, M. P., Rose, C., Sarnela, N., Schallhart, S., Schuchmann, S.,Sengupta, K., Simon, M., Sipilä, M., Tauber, C., Tomé, A.,Tröstl, J., Väisänen, O., Vogel, A. L., Volkamer, R., Wagner, A.C., Wang, M., Weitz, L., Wimmer, D., Ye, P., Ylisirniö, A., Zha, Q.,Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A.,Riipinen, I., Virtanen, A., Winkler, P. M., Baltensperger, U., Kulmala, M.,and Worsnop, D. R.: Multicomponent new particle formation from sulphuricacid, ammonia, and biogenic vapors, Sci. Adv., 4, eaau5363,https://doi.org/10.1126/sciadv.aau5363, 2018. 
[30] Olenius, T., Halonen, R., Kurtén, T., Henschel, H.,Kupiainen-Määttä, O., Ortega, I. K., Jen, C. N., Vehkamäki,H., and Riipinen, I.: New particle formation from sulfuric acid and amines:Comparison of monomethylamine, dimethylamine, and trimethylamine, J.Geophys. Res., 122, 7103–7118, https://doi.org/10.1002/2017JD026501, 2017. 
[31] Cubison, M. J. and Jimenez, J. L.: Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra, Atmos. Meas. Tech., 8, 2333–2345, https://doi.org/10.5194/amt-8-2333-2015, 2015. 
[32] Nieminen, T., Lehtinen, K. E. J., and Kulmala, M.: Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed, Atmos. Chem. Phys., 10, 9773–9779, https://doi.org/10.5194/acp-10-9773-2010, 2010. 
[33] Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., and Kerminen, V. M.:Estimating nucleation rates from apparent particle formation rates and viceversa: Revised formulation of the Kerminen-Kulmala equation, J. AerosolSci., 38, 988–994, https://doi.org/10.1016/j.jaerosci.2007.06.009, 2007. 
[34] Lee, S. H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang,R.: New Particle Formation in the Atmosphere: From Molecular Clusters toGlobal Climate, J. Geophys. Res.-Atmos., 124, 7098–7146, https://doi.org/10.1029/2018JD029356, 2019. 
[35] Harrison, R. M., Rob Mackenzie, A., Xu, H., Alam, M. S., Nikolova, I.,Zhong, J., Singh, A., Zeraati-Rezaei, S., Stark, C., Beddows, D. C. S.,Liang, Z., Xu, R., and Cai, X.: Diesel exhaust nanoparticles and theirbehaviour in the atmosphere, P. R. Soc. A,474, 20180492, https://doi.org/10.1098/rspa.2018.0492, 2018. 
[36] Curtius, J., Froyd, K. D., and Lovejoy, E. R.: Cluster ion thermaldecomposition (I): Experimental kinetics study and ab initio calculationsfor HSO4-(H2S4)x(HNO3)y, J. Phys. Chem.A, 105, 10867–10873, https://doi.org/10.1021/jp0124950, 2001. 
[37] Hirsikko, A., Nieminen, T., Gagné, S., Lehtipalo, K., Manninen, H. E., Ehn, M., Hõrrak, U., Kerminen, V.-M., Laakso, L., McMurry, P. H., Mirme, A., Mirme, S., Petäjä, T., Tammet, H., Vakkari, V., Vana, M., and Kulmala, M.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys., 11, 767–798, https://doi.org/10.5194/acp-11-767-2011, 2011. 
[38] Ortega, I. K., Kupiainen, O., Kurtén, T., Olenius, T., Wilkman, O., McGrath, M. J., Loukonen, V., and Vehkamäki, H.: From quantum chemical formation free energies to evaporation rates, Atmos. Chem. Phys., 12, 225–235, https://doi.org/10.5194/acp-12-225-2012, 2012. 
[39] Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P.P., and Lehtinen, K. E. J.: Formation and growth of fresh atmosphericaerosols: Eight years of aerosol size distribution data from SMEAR II,Hyytiälä, Finland, Boreal Environ. Res., 10, 323–336, 2005. 
[40] Henschel, S., Querol, X., Atkinson, R., Pandolfi, M., Zeka, A., Tertre, A.L., Analistis, A., Katsouyanni, K., Chanel, O., Pascal, M., Bouland, C.,Haluza, D., Medina, S., and Goodman, P. G.: Ambient air SO2 patterns in6 European cities, Atmos. Environ., 79, 236–247,https://doi.org/10.1016/j.atmosenv.2013.06.008, 2013. 
[41] Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J.,Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M.,Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F.,Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V. M.,Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L.: Atmosphericnew particle formation from sulphuric acid and amines in a Chinese megacity,Science, 361, 278–281, https://doi.org/10.1126/science.aao4839, 2018. 
[42] Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M.,Simon, M., Wagner, A. C., Dada, L., Ahonen, L. R., Amorim, A., Baccarini,A., Bauer, P. S., Baumgartner, B., Bergen, A., Bianchi, F., Breitenlechner,M., Brilke, S., Buenrostro Mazon, S., Chen, D., Dias, A., Draper, D. C.,Duplissy, J., El Haddad, I., Finkenzeller, H., Frege, C., Fuchs, C.,Garmash, O., Gordon, H., He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kim,C., Kirkby, J., Kontkanen, J., Kürten, A., Lampilahti, J., Lawler, M.,Lehtipalo, K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U.,Nie, W., Nieminen, T., Nowak, J. B., Ojdanic, A., Onnela, A., Passananti,M., Petäjä, T., Quéléver, L. L. J., Rissanen, M. P.,Sarnela, N., Schallhart, S., Tauber, C., Tomé, A., Wagner, R., Wang, M.,Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Baltensperger,U., Curtius, J., Dommen, J., Flagan, R. C., Kulmala, M., Smith, J. N.,Worsnop, D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growthof organic aerosol nanoparticles over a wide tropospheric temperature range,P. Natl. Acad. Sci. USA, 115, 9122–9127, 2018. 
[43] Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,Clerbaux, C., and Coheur, P. F.: Industrial and agricultural ammonia pointsources exposed, Nature, 564, 99–103, https://doi.org/10.1038/s41586-018-0747-1,2018. 
[44] Wang, S., Wu, R., Berndt, T., Ehn, M., and Wang, L.: Formation of HighlyOxidized Radicals and Multifunctional Products from the AtmosphericOxidation of Alkylbenzenes, Environ. Sci. Technol., 51, 8442–8449,https://doi.org/10.1021/acs.est.7b02374, 2017. 
[45] Yu, H., Zhou, L., Dai, L., Shen, W., Dai, W., Zheng, J., Ma, Y., and Chen, M.: Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China, Atmos. Chem. Phys., 16, 2641–2657, https://doi.org/10.5194/acp-16-2641-2016, 2016. 
[46] Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni,U., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J.,Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S.,Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A.,Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim,J., Krapf, M., Kürten, A., Laaksonen, A., Lawler, M., Leiminger, M.,Mathot, S., Möhler, O., Nieminen, T., Onnela, A., Petäjä, T.,Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N.,Schobesberger, S., Sengupta, K., Sipilä, M., Smith, J. N., Steiner, G.,Tomè, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D.,Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J.,Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger,U.: The role of low-volatility organic compounds in initial particle growthin the atmosphere, Nature, 533, 527–531, https://doi.org/10.1038/nature18271,2016. 
[47] Yli-Juuti, T., Pajunoja, A., Tikkanen, O. P., Buchholz, A., Faiola, C.,Väisänen, O., Hao, L., Kari, E., Peräkylä, O., Garmash, O.,Shiraiwa, M., Ehn, M., Lehtinen, K., and Virtanen, A.: Factors controllingthe evaporation of secondary organic aerosol from α-pineneozonolysis, Geophys. Res. Lett., 44, 2562–2570,https://doi.org/10.1002/2016GL072364, 2017. 
[48] Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoringof the composition and mass concentrations of ambient aerosol, Aerosol Sci.Tech., 45, 770–784, https://doi.org/10.1080/02786826.2011.560211, 2011. 
[49] Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.: Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, 2015. 
[50] Harrison, R. and Brean, J.: Particle nucleation study in Barcelona, University of Birmingham, https://doi.org/10.25500/edata.bham.00000434, 2020. 
[51] Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden ofdisease attributable to ambient air pollution: an analysis of data from theGlobal Burden of Diseases Study 2015, Lancet, 389, 1907–1918,https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. 
[52] Møller, K. H., Tram, C. M., and Kjaergaard, H. G.: Side-by-Side Comparisonof Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors, J. Phys.Chem. A, 121, 2951–2959, https://doi.org/10.1021/acs.jpca.7b01323, 2017. 
[53] Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severeurban haze formation in China, P. Natl. Acad. Sci. USA, 111,17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014. 
[54] Cadle, S. H. and Mulawa, P. A.: Low-molecular-weight aliphatic amines inexhaust from catalyst-equipped cars, Environ. Sci. Technol., 14,718–723, https://doi.org/10.1021/es60166a011, 1980. 
[55] Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, 2018. 
[56] Graus, M., Müller, M., and Hansel, A.: High resolution PTR-TOF:Quantification and Formula Confirmation of VOC in Real Time, J. Am. Soc.Mass Spectrom., 21, 1037–1044, https://doi.org/10.1016/j.jasms.2010.02.006, 2010. 
[57] Carnerero, C., Pérez, N., Petäjä, T., Laurila, T. M., Ahonen, L.R., Kontkanen, J., Ahn, K. H., Alastuey, A., and Querol, X.: Relating highozone, ultrafine particles, and new particle formation episodes usingcluster analysis, Atmos. Environ. X, 4, 1–20,https://doi.org/10.1016/j.aeaoa.2019.100051, 2019. 
[58] Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R., and Ehn, M.: Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization, Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, 2016. 
[59] Reche, C., Viana, M., Karanasiou, A., Cusack, M., Alastuey, A.,Artiñano, B., Revuelta, M. A., López-Mahía, P., Blanco-Heras,G., Rodríguez, S., Sánchez de la Campa, A. M.,Fernández-Camacho, R., González-Castanedo, Y., Mantilla, E., Tang,Y. S., and Querol, X.: Urban NH3 levels and sources in six major Spanishcities, Chemosphere, 119, 769–777, https://doi.org/10.1016/j.chemosphere.2014.07.097,2015. 
[60] Querol, X., Gangoiti, G., Mantilla, E., Alastuey, A., Minguillón, M. C., Amato, F., Reche, C., Viana, M., Moreno, T., Karanasiou, A., Rivas, I., Pérez, N., Ripoll, A., Brines, M., Ealo, M., Pandolfi, M., Lee, H.-K., Eun, H.-R., Park, Y.-H., Escudero, M., Beddows, D., Harrison, R. M., Bertrand, A., Marchand, N., Lyasota, A., Codina, B., Olid, M., Udina, M., Jiménez-Esteve, B., Soler, M. R., Alonso, L., Millán, M., and Ahn, K.-H.: Phenomenology of high-ozone episodes in NE Spain, Atmos. Chem. Phys., 17, 2817–2838, https://doi.org/10.5194/acp-17-2817-2017, 2017. 
[61] Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010. 
[62] Kerminen, V. M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., andBianchi, F.: Atmospheric new particle formation and growth: Review of fieldobservations, Environ. Res. Lett., 13, 10, https://doi.org/10.1088/1748-9326/aadf3c,2018. 
[63] Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C., and McMurry, P. H.:Chemical ionization mass spectrometric measurements of atmospheric neutralclusters using the cluster-CIMS, J. Geophys. Res., 115, 1–19,https://doi.org/10.1029/2009jd012606, 2010. 
[64] Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin III, R. L., Kulmala, M., and Worsnop, D. R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmos. Chem. Phys., 12, 4117–4125, https://doi.org/10.5194/acp-12-4117-2012, 2012. 
[65] Kuang, C., McMurry, P. H., McCormick, A. V., and Eisele, F. L.: Dependence ofnucleation rates on sulfuric acid vapor concentration in diverse atmosphericlocations, J. Geophys. Res.-Atmos., 113, 1–9, https://doi.org/10.1029/2007JD009253,2008. 
[66] Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and growthof nanoparticles in the atmosphere, Chem. Rev., 112, 1957–2011,https://doi.org/10.1021/cr2001756, 2012. 
[67] Quéléver, L. L. J., Kristensen, K., Normann Jensen, L., Rosati, B., Teiwes, R., Daellenbach, K. R., Peräkylä, O., Roldin, P., Bossi, R., Pedersen, H. B., Glasius, M., Bilde, M., and Ehn, M.: Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis, Atmos. Chem. Phys., 19, 7609–7625, https://doi.org/10.5194/acp-19-7609-2019, 2019. 
[68] Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P.,Duplissy, E.-M., Junninen, H., Kangasluoma, J., Manninen, H. E.,Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A.,and Kerminen, V.-M.: Ion-induced sulphuric acid–ammonia nucleation drivesparticle formation in coastal Antarctica, Sci. Adv., 4, eaat9744,https://doi.org/10.1126/sciadv.aat9744, 2018. 
[69] Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger,A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D.,Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo,K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P.,Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M.,Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y.,Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler,P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.:Role of sulphuric acid, ammonia and galactic cosmic rays in atmosphericaerosol nucleation, Nature, 476, 429–435, https://doi.org/10.1038/nature10343,2011. 
[70] Yan, C., Nie, W., Vogel, A. L., Dada, L., Lehtipalo, K., Stolzenburg, D.,Wagner, R., Rissanen, M. P., Xiao, M., Ahonen, L., Fischer, L., Rose, C.,Bianchi, F., Gordon, H., Simon, M., Heinritzi, M., Garmash, O., Roldin, P.,Dias, A., Ye, P., Hofbauer, V., Amorim, A., Bauer, P. S., Bergen, A.,Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Buchholz, A., Mazon, S.B., Canagaratna, M. R., Chen, X., Ding, A., Dommen, J., Draper, D. C.,Duplissy, J., Frege, C., Heyn, C., Guida, R., Hakala, J., Heikkinen, L.,Hoyle, C. R., Jokinen, T., Kangasluoma, J., Kirkby, J., Kontkanen, J.,Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin, R. L., Molteni,U., Nichman, L., Nieminen, T., Nowak, J., Ojdanic, A., Onnela, A., Pajunoja,A., Petäjä, T., Piel, F., Quéléver, L. L. J., Sarnela, N.,Schallhart, S., Sengupta, K., Sipilä, M., Tomé, A., Tröstl, J.,Väisänen, O., Wagner, A. C., Ylisirniö, A., Zha, Q.,Baltensperger, U., Carslaw, K. S., Curtius, J., Flagan, R. C., Hansel, A.,Riipinen, I., Smith, J. N., Virtanen, A., Winkler, P. M., Donahue, N. M.,Kerminen, V.-M., Kulmala, M., Ehn, M., and Worsnop, D. R.: Size-dependentinfluence of NOx on the growth rates of organic aerosol particles,Sci. Adv., 6, eaay4945, https://doi.org/10.1126/sciadv.aay4945, 2020. 
[71] Yan, C., Dada, L., Rose, C., Jokinen, T., Nie, W., Schobesberger, S., Junninen, H., Lehtipalo, K., Sarnela, N., Makkonen, U., Garmash, O., Wang, Y., Zha, Q., Paasonen, P., Bianchi, F., Sipilä, M., Ehn, M., Petäjä, T., Kerminen, V.-M., Worsnop, D. R., and Kulmala, M.: The role of H2SO4-NH3 anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest, Atmos. Chem. Phys., 18, 13231–13243, https://doi.org/10.5194/acp-18-13231-2018, 2018. 
[72] Penner, J. E., Xu, L., and Wang, M.: Satellite methods underestimate indirectclimate forcing by aerosols, P. Natl. Acad. Sci. USA, 108,13404–13408, https://doi.org/10.1073/pnas.1018526108, 2011. 
[73] Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A.,Riipinen, I., Hong, J., Donahue, N. M., Hallquist, M., Petäjä, T.,Kulmala, M., and Yli-Juuti, T.: Molecular identification of organic vaporsdriving atmospheric nanoparticle growth, Nat. Commun., 10, 1–7,https://doi.org/10.1038/s41467-019-12473-2, 2019. 
[74] Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites, Atmos. Chem. Phys., 19, 5679–5694, https://doi.org/10.5194/acp-19-5679-2019, 2019. 
[75] Minguillón, M. C., Pérez, N., Marchand, N., Bertrand, A.,Temime-Roussel, B., Agrios, K., Szidat, S., van Drooge, B. L., Sylvestre, A.,Alastuey, A., Reche, C., Ripoll, A., Marco, E., Grimalt, J. O., and Querol, X.:Secondary organic aerosol origin in an urban environment. Influence ofbiogenic and fuel combustion precursors, Faraday Discuss., 189, 337–359,2016. 
[76] Passananti, M., Zapadinsky, E., Zanca, T., Kangasluoma, J., Myllys, N.,Rissanen, M. P., Kurtén, T., Ehn, M., Attoui, M., and Vehkamäki, H.:How well can we predict cluster fragmentation inside a mass spectrometer?,Chem. Commun., 55, 5946–5949, https://doi.org/10.1039/c9cc02896j, 2019. 
[77] Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part II.Thermodynamic properties and gas/particle partitioning, Atmos. Environ.,45, 561–577, https://doi.org/10.1016/j.atmosenv.2010.10.013, 2011b. 
[78] Praske, E., Otkjær, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B.M., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric autoxidation isincreasingly important in urban and suburban North America, P. Natl.Acad. Sci. USA, 115, 64–69, https://doi.org/10.1073/pnas.1715540115, 2018. 
[79] Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. Areview, Atmos. Environ., 45, 524–546,https://doi.org/10.1016/j.atmosenv.2010.10.012, 2011a. 
[80] Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin,P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J.,Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated OrganicMolecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A KeyContributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019. 
[81] Garmash, O., Rissanen, M. P., Pullinen, I., Schmitt, S., Kausiala, O., Tillmann, R., Zhao, D., Percival, C., Bannan, T. J., Priestley, M., Hallquist, Å. M., Kleist, E., Kiendler-Scharr, A., Hallquist, M., Berndt, T., McFiggans, G., Wildt, J., Mentel, T. F., and Ehn, M.: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics, Atmos. Chem. Phys., 20, 515–537, https://doi.org/10.5194/acp-20-515-2020, 2020. 
[82] Ábalos, M., Bayona, J. M., and Ventura, F.: Development of a solid-phasemicroextraction GC-NPD procedure for the determination of free volatileamines in wastewater and sewage-polluted waters, Anal. Chem., 71,3531–3537, https://doi.org/10.1021/ac990197h, 1999. 
[83] Bianchi, F., Garmash, O., He, X., Yan, C., Iyer, S., Rosendahl, I., Xu, Z., Rissanen, M. P., Riva, M., Taipale, R., Sarnela, N., Petäjä, T., Worsnop, D. R., Kulmala, M., Ehn, M., and Junninen, H.: The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest, Atmos. Chem. Phys., 17, 13819–13831, https://doi.org/10.5194/acp-17-13819-2017, 2017. 
[84] Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., and Querol, X.: Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS, Atmos. Chem. Phys., 14, 2973–2986, https://doi.org/10.5194/acp-14-2973-2014, 2014. 
[85] Brean, J., Harrison, R. M., Shi, Z., Beddows, D. C. S., Acton, W. J. F., Hewitt, C. N., Squires, F. A., and Lee, J.: Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing, Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, 2019. 
[86] Riccobono, F., Schobesberger, S., Scott, C., Dommen, J., Ortega, I., Rondo,L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A.,Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R., Franchin, A.,Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kürten, A.,Kvashin, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,Nieminen, T., Onnela, A., Petäjä, T., Praplan, A., Santos, F.,Schallhart, S., Seinfeld, J., Sipilä, M., Van Spracklen, D., Stozhkov,Y., Stratmann, F., Tomé, A., Tsagkogeorgas, G., Vaattovaara, P.,Viisanen, Y., Vrtala, A., Wagner, P., Weingartner, E., Wex, H., Wimmer, D.,Carslaw, K., Curtius, J., Donahue, N., Kirkby, J., Kulmala, M., Worsnop, D.,and Baltensperger, U.: Oxidation products of biogenic emissions contributeto nucleation of atmospheric particles, Science, 344, 717–721,https://doi.org/10.1126/science.1243527, 2014. 
[87] Frege, C., Ortega, I. K., Rissanen, M. P., Praplan, A. P., Steiner, G., Heinritzi, M., Ahonen, L., Amorim, A., Bernhammer, A.-K., Bianchi, F., Brilke, S., Breitenlechner, M., Dada, L., Dias, A., Duplissy, J., Ehrhart, S., El-Haddad, I., Fischer, L., Fuchs, C., Garmash, O., Gonin, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kirkby, J., Kürten, A., Lehtipalo, K., Leiminger, M., Mauldin, R. L., Molteni, U., Nichman, L., Petäjä, T., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Stolzenburg, D., Tomé, A., Vogel, A. L., Wagner, A. C., Wagner, R., Xiao, M., Yan, C., Ye, P., Curtius, J., Donahue, N. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Winkler, P. M., Dommen, J., and Baltensperger, U.: Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation, Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, 2018. 
[88] Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding ofsulphuric acid-amine particle nucleation in the atmosphere, Nature,502, 359–363, https://doi.org/10.1038/nature12663, 2013. 
[89] Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.R., Molteni, U., Herrmann, E., Bukowiecki, N., Chen, X., Duplissy, J.,Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Manninen, H. E.,Münch, S., Peräkylä, O., Petäjä, T., Rondo, L.,Williamson, C., Weingartner, E., Worsnop, D. R., Kulmala, M., Dommen, J., andBaltensperger, U.: New particle formation in the free troposphere?: Aquestion of chemistry and timing, Science, 5456, 1–11, 2016. 
[90] Minguillón, M. C., Brines, M., Pérez, N., Reche, C., Pandol, M.,Fonseca, A. S., Amato, F., Alastuey, A., Lyasota, A., Codina, B., Lee, H.,Eun, H., Ahn, K., and Querol, X.: New particle formation at ground level andin the vertical column over the Barcelona area, Atmos. Res., 165, 118–130,https://doi.org/10.1016/j.atmosres.2015.05.003, 2015. 
浏览 70次
下载全文 13次
评分次数 0次
用户评分 0.0分
分享 0次