首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 14 ,2020-07-31
Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing
Ru-Jin Huang 1 , 2 Yao He 1 Jing Duan 1 Yongjie Li 3 Qi Chen 4 Yan Zheng 4 Yang Chen 5 Weiwei Hu 6 Chunshui Lin 1 Haiyan Ni 1 Wenting Dai 1 Junji Cao 1 Yunfei Wu 7 Renjian Zhang 7 Wei Xu 1 , 8 Jurgita Ovadnevaite 8 Darius Ceburnis 8 Thorsten Hoffmann 9 Colin D. O'Dowd 8
Show affiliations
DOI:10.5194/acp-20-9101-2020
PDF
摘要

Although there are many studies of particulate matter (PM) pollution in Beijing, the sources and processes of secondary PM species during haze periods remain unclear. Limited studies have investigated the PM formation in highly polluted environments under low- and high-relative-humidity (RH) conditions. Herein, we present a systematic comparison of species in submicron particles (PM1) in wintertime Beijing (29 December 2014 to 28 February 2015) for clean periods and pollution periods under low- and high-RH conditions. PM1 species were measured with an aerosol chemical species monitor (ACSM) and an Aethalometer. Sources and processes for organic aerosol (OA) were resolved by positive matrix factorization (PMF) with a multilinear engine 2 (ME-2). The comparisons for clean, low-RH pollution and high-RH pollution periods are made from three different aspects, namely (a) mass concentration, (b) mass fraction and (c) growth rate in diurnal profiles. OA is the dominant component of PM1, with an average mass concentration of 56.7 µg m−3 (46 %) during high-RH pollution and 67.7 µg m−3 (54 %) during low-RH pollution periods. Sulfate had higher concentration and mass fraction during high-RH pollution periods, while nitrate had higher concentration and mass fraction during low-RH pollution periods. The diurnal variations of nitrate and oxygenated organic aerosol (OOA) showed a daytime increase in their concentrations during all three types of periods. Nitrate had similar growth rates during low-RH (0.40 µg m−3 h−1) and high-RH (0.55 µg m−3 h−1) pollution periods. OOA had a higher growth rate during low-RH pollution periods (1.0 µg m−3 h−1) than during high-RH pollution periods (0.40 µg m−3 h−1). In contrast, sulfate had a decreasing trend during low-RH pollution periods, while it increased significantly with a growth rate of 0.81 µg m−3 h−1 during high-RH pollution periods. These distinctions in mass concentrations, mass fractions and daytime growth rates may be explained by the difference in the formation processes affected by meteorological conditions. In particular, photochemical oxidation and aqueous-phase processes may both produce sulfate and nitrate. The relative importance of the two pathways, however, differs under different meteorological conditions. Additional OOA formation under high-RH (> 70 %) conditions suggests aqueous-related formation pathways. This study provides a general picture of the haze formation in Beijing under different meteorological conditions.

授权许可

Copyright: © 2020 Ru-Jin Huang et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Ru-Jin Huang,Yao He,Jing Duan,Yongjie Li,Qi Chen,Yan Zheng,Yang Chen,Weiwei Hu,Chunshui Lin,Haiyan Ni,Wenting Dai,Junji Cao,Yunfei Wu,Renjian Zhang,Wei Xu,Jurgita Ovadnevaite,Darius Ceburnis,Thorsten Hoffmann,Colin D. O'Dowd. Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics ,Vol.20, Issue 14(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017. 
[2] Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A., Jimenez, J., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J. E., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559, 2017. 
[3] Canagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi, Q.,Jimenez, J. L., Silva, P. J., Williams, P., Lanni, T., Drewnick, F.,Demerjian, K. L., Kolb, C. E., and Worsnop, D. R.: Chase studies ofparticulate emissions from in-use New York City vehicles, Aerosol Sci.Tech., 38, 555–573, 2004. 
[4] Lu, K., Fuchs, H., Hofzumahaus,A., Tan, Z., Wang, H., Zhang, L., Schmitt, S. H., Rohrer, F., Bohn, B.,Broch, S., Dong, H., Gkatzelis, G. I., Hohaus, T., Holland, F., Li, X., Liu,Y., Ma, X., Novelli, A., Schlag, P., Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu,M., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Fast Photochemistry inWintertime Haze: Consequences for Pollution Mitigation Strategies, Environ.Sci. Technol, 53, 10676–10684, 2019. 
[5] Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysicalcharacterization of ambient aerosols with the Aerodyne aerosol massspectrometer, Mass Spectrom. Rev., 26, 185–222,https://doi.org/10.1002/mas.20115, 2007. 
[6] Xu, W. Q., Han, T. T., Du, W., Wang, Q. Q., Chen, C., Zhao, J., Zhang, Y.J., Li, J., Fu, P. Q., Wang, Z. F., Worsnop, D. R., and Sun, Y. L.: Effectsof Aqueous-Phase and Photochemical Processing on Secondary Organic AerosolFormation and Evolution in Beijing, China, Environ. Sci. Technol., 51,762–770, https://doi.org/10.1021/acs.est.6b04498, 2017. 
[7] Song, S., Nenes, A., Gao, M., Zhang, Y., Liu, P., Shao, J., Ye, D., Xu, W.,Lei, L., Sun, Y., Liu, B., Wang, S., and McElroy, M.: Thermodynamic modelingsuggests declines in water uptake and acidity of inorganic aerosols inBeijing winter haze events during 2014/2015–2018/2019, Environ. Sci.Tech. Let., 6, 752–760, 2019. 
[8] Xu, W. Q., Sun, Y. L., Wang, Q. Q., Zhao, J., Wang, J. F., Ge, X. L., Xie,C. H., Zhou, W., Du, W., Li, J., Fu, P. Q., Wang, Z. F., Worsnop, D. R., andCoe, H.: Changes in aerosol chemistry from 2014 to 2016 in winter inBeijing: insights from high resolution aerosol mass spectrometry, J.Geophys. Res.-Atmos., 124, 1132–1147, 2018. 
[9] Sun, Y. L., Wang, Z. F., Fu, P. Q., Jiang, Q., Yang, T., Li, J., and Ge, X.L.: The impact of relative humidity on aerosol composition and evolutionprocesses during wintertime in Beijing, China, Atmos. Environ., 77, 927–934,2013b. 
[10] Zhang, Y. J., Tang, L. L., Sun, Y. L., Favez, O., Canonaco, F., Albinet, A.,Couvidat, F., Liu, D. T., Jayne, J. T., Wang, Z., Croteau, P. L.,Canagaratna, M. R., Zhou, H. C., Prevot, A. S. H., and Worsnop, D. R.:Limited formation of isoprene epoxydiols-derived secondary organic aerosolunder NOx-rich environments in Eastern China, Geophys. Res. Lett., 44,2035–2043, https://doi.org/10.1002/2016GL072368, 2017. 
[11] Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013a. 
[12] An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy ofanthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA,116, 8657–8666, 2019. 
[13] Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing, Atmos. Chem. Phys., 11, 11023–11039, https://doi.org/10.5194/acp-11-11023-2011, 2011. 
[14] Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr., J. R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, 2015. 
[15] Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prévôt, A. S. H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys., 7, 1503–1522, https://doi.org/10.5194/acp-7-1503-2007, 2007. 
[16] Sun, Y. L., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., andJayne, J. T.: Characterization of summer organic and inorganic aerosols inBeijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ.,51, 250–259, https://doi.org/10.1016/j.atmosenv.2012.01.013, 2012. 
[17] Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negativefactor model with optimal utilization of error estimates of data values,Environmetrics, 5, 111–126, 1994. 
[18] Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, 2019. 
[19] Huang, R.-J., Wang, Y., Cao, J., Lin, C., Duan, J., Chen, Q., Li, Y., Gu, Y., Yan, J., Xu, W., Fröhlich, R., Canonaco, F., Bozzetti, C., Ovadnevaite, J., Ceburnis, D., Canagaratna, M. R., Jayne, J., Worsnop, D. R., El-Haddad, I., Prévôt, A. S. H., and O'Dowd, C. D.: Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China, Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, 2019. 
[20] Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42–NO3–Cl–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. 
[21] Fröhlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G., Aas, W., Aijälä, M., Alastuey, A., Artiñano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillón, M. C., Močnik, G., O'Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., Wiedensohler, A., Baltensperger, U., Sciare, J., and Prévôt, A. S. H.: ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers, Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, 2015. 
[22] Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M.,Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., andPrevot, A. S. H.: High secondary aerosol contribution to particulate pollutionduring haze events in China, Nature, 514, 218–222, 2014. 
[23] Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao,M., Zhang, Q., He, K. B., Carmichael, G., Pöschl, U., and Su, H.:Reactive nitrogen chemistry in aerosol water as a source of sulfate duringhaze events in China, Sci. Adv., 2, e1601530,https://doi.org/10.1126/sciadv.1601530, 2016. 
[24] Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.:Investigation of the sources and evolution processes of severe hazepollution in Beijing in January 2013, J. Geophys. Res.-Atmos., 119,4380–4398, https://doi.org/10.1002/2014JD021641, 2014. 
[25] Cerully, K. M., Bougiatioti, A., Hite Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States, Atmos. Chem. Phys., 15, 8679–8694, https://doi.org/10.5194/acp-15-8679-2015, 2015. 
[26] Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, M., andWorsnop, D. R.: Real-time methods for estimating organic component massconcentrations from aerosol mass spectrometer data, Environ. Sci. Technol.,45, 910–916, https://doi.org/10.1021/es102951k, 2011b. 
[27] Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581–1602, https://doi.org/10.5194/acp-11-1581-2011, 2011. 
[28] Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013. 
[29] Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016. 
[30] Wu, Y. Z., Ge, X. L., Wang, J. F., Shen, Y. F., Ye, Z. L., Ge, S., Wu, Y.,Yu, H., and Chen, M. D.: Responses of secondary aerosols to relativehumidity and photochemical activities in an industrialized environmentduring late winter, Atmos. Environ., 193, 66–78, 2018. 
[31] Wang, Y. C., Huang, R. J., Ni, H. Y., Chen, Y., Wang, Q. Y., Li, G. H., Tie,X. X., Shen, Z. X., Huang, Y., Liu, S. X., Dong, W. M., Xue, P.,Fröhlich, R., Canonaco, F., Elser, M., Daellenbach, K.R., Bozzetti, C.,Haddad, EI., and Cao, J. J.: Chemical composition, sources and secondaryprocesses of aerosols in Baoji city of northwest China, Atmos. Environ.,158, 128–137, https://doi.org/10.1016/j.atmosenv.2017.03.026, 2017. 
[32] Wang, Q., Sun, Y., Jiang, Q., Du, W., Sun, C., Fu, P., and Wang, Z.: Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China, J. Geophys. Res.-Atmos., 120, 12708–12722, 2015. 
[33] East Asian Paleoenvironmental Science Database, National Earth System Science Data Center, National Science & Technology Infrastructure of China, http://paleodata.ieecas.cn/index.aspx, last access: 21 July 2020. 
[34] Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu,Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemicalcomposition, sources, and aging process of submicron aerosols in Beijing:Contrast between summer and winter, J. Geophys. Res.-Atmos., 121,1955–1977, https://doi.org/10.1002/2015JD024020, 2016. 
[35] Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009. 
[36] Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, 2016. 
[37] Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. 
[38] Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775–2790, https://doi.org/10.5194/acp-15-2775-2015, 2015. 
[39] Sun, C., Lee, B. P., Huang, D., Jie Li, Y., Schurman, M. I., Louie, P. K. K., Luk, C., and Chan, C. K.: Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong, Atmos. Chem. Phys., 16, 1713–1728, https://doi.org/10.5194/acp-16-1713-2016, 2016. 
[40] Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013. 
[41] Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,Onasch, T. B., Sueoer, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoringof the composition and mass concentrations of ambient aerosol, Aerosol Sci.Technol., 45, 770–784, https://doi.org/10.1080/02786826.2011.560211,2011a. 
[42] Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data, Aerosol Sci. Tech., 46, 258–271, https://doi.org/10.1080/02786826.2011.620041, 2012. 
[43] Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, 2014. 
文献评价指标
浏览 73次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次