首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 12 ,2020-06-24
Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China
Jingyi Li 1 , 2 Haowen Zhang 2 Qi Ying 3 Zhijun Wu 4 , 1 Yanli Zhang 5 , 6 Xinming Wang 5 , 6 , 7 Xinghua Li 8 Yele Sun 9 Min Hu 4 , 1 Yuanhang Zhang 4 , 1 Jianlin Hu 1 , 2
Show affiliations
DOI:10.5194/acp-20-7291-2020
PDF
摘要

Secondary organic aerosol (SOA) is an important component of fine particular matter (PM2.5). Most air quality models use an equilibrium partitioning method along with the saturation vapor pressure (SVP) of semivolatile organic compounds (SVOCs) to predict SOA formation. However, the models typically assume that the organic particulate matter (OPM) is an ideal mixture and ignore the partitioning of water vapor to OPM. In this study, the Community Multiscale Air Quality model (CMAQ) is updated to investigate the impacts of water vapor partitioning and nonideality of the organic–water mixture on SOA formation during winter (January) and summer (July) of 2013 over eastern China. The updated model treats the partitioning of water vapor molecules into OPM and uses the universal functional activity coefficient (UNIFAC) model to estimate the activity coefficients of species in the organic–water mixture. The modified model can generally capture the observed surface organic carbon (OC) with a correlation coefficient R of 0.7 and the surface organic aerosol (OA) with the mean fractional bias (MFB) and mean fractional error (MFE) of −0.28 and 0.54, respectively. SOA concentration shows significant seasonal and spatial variations, with high concentrations in the North China Plain (NCP), central China, and the Sichuan Basin (SCB) regions during winter (up to 25 µg m−3) and in the Yangtze River Delta (YRD) during summer (up to 16 µg m−3). In winter, SOA decreases slightly in the updated model, with a monthly averaged relative change of 10 %–20 % in the highly concentrated areas, mainly due to organic–water interactions. The monthly averaged concentration of SOA increases greatly in summer, by 20 %–50 % at the surface and 30 %–60 % in the whole column. The increase in SOA is mainly due to the increase in biogenic SOA in inland areas and anthropogenic SOA in coastal areas. As a result, the averaged aerosol optical depth (AOD) is increased by up to 10 %, and the cooling effect of aerosol radiative forcing (ARF) is enhanced by up to 15 % over the YRD in summer. The aerosol liquid water content associated with OPM (ALWorg) at the surface is relatively high in inland areas in winter and over the ocean in summer, with a monthly averaged concentration of 0.5–3.0 and 5–7 µg m−3, respectively. The hygroscopicity parameter κ of OA based on the κ–Köhler theory is determined using the modeled ALWorg. The correlation of κ with the O:C ratio varies significantly across different cities and seasons. Analysis of two representative cities, Jinan (in the NCP) and Nanjing (in the YRD), shows that the impacts of water partitioning and nonideality of the organic–water mixture on SOA are sensitive to temperature, relative humidity (RH), and the SVP of SVOCs. The two processes exhibit opposite impacts on SOA in eastern China. Water uptake increases SOA by up to 80 % in the organic phase, while including nonunity activity coefficients decreases SOA by up to 50 %. Our results indicate that both water partitioning into OPM and the activity coefficients of the condensed organics should be considered in simulating SOA formation from gas–particle partitioning, especially in hot and humid environments.

授权许可

Copyright: © 2020 Jingyi Li et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Jingyi Li,Haowen Zhang,Qi Ying,Zhijun Wu,Yanli Zhang,Xinming Wang,Xinghua Li,Yele Sun,Min Hu,Yuanhang Zhang,Jianlin Hu. Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmospheric Chemistry and Physics ,Vol.20, Issue 12(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Zhao, B., Wang, S., Donahue, N. M., Jathar, S. H., Huang, X., Wu, W., Hao, J., and Robinson, A. L.: Quantifying the effect of organic aerosol aging andintermediate-volatility emissions on regional-scale aerosol pollution in China, Sci. Rep., 6, 28815, https://doi.org/10.1038/srep28815, 2016. 
[2] Lin, J., An, J., Qu, Y., Chen, Y., Li, Y., Tang, Y., Wang, F., and Xiang, W.: Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer, Atmos. Environ., 124, 176–185, https://doi.org/10.1016/j.atmosenv.2015.08.098, 2016. 
[3] Fu, H. and Chen, J.: Formation, features and controlling strategies of severe haze-fog pollutions in China, Sci. Total Environ., 578, 121–138,https://doi.org/10.1016/j.scitotenv.2016.10.201, 2017. 
[4] Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,Science, 315, 1259–1262, https://doi.org/10.1126/science.1133061, 2007. 
[5] Rickards, A. M. J., Miles, R. E. H., Davies, J. F., Marshall, F. H., andReid, J. P.: Measurements of the Sensitivity of Aerosol Hygroscopicity andthe κ Parameter to the O∕C Ratio, J. Phys. Chem. A, 117,14120–14131, https://doi.org/10.1021/jp407991n, 2013. 
[6] Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosolformation in cloud droplets and aqueous particles (aqSOA): a review oflaboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102,https://doi.org/10.5194/acp-11-11069-2011, 2011. 
[7] Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,Climate, and the Hydrological Cycle, Science, 294, 2119–2124,https://doi.org/10.1126/science.1064034, 2001. 
[8] EPA: U.S.: Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2:5, and RegionalHaze, EPA-454/B-07-002, available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1009OL1.PDF?Dockey=P1009OL1.PDF(last access: 10 May 2019), 2007. 
[9] Liu, X.-H., Zhang, Y., Cheng, S.-H., Xing, J., Zhang, Q., Streets, D. G.,Jang, C., Wang, W.-X., and Hao, J.-M.: Understanding of regional airpollution over China using CMAQ, part I performance evaluation and seasonalvariation, Atmos. Environ., 44, 2415–2426, https://doi.org/10.1016/j.atmosenv.2010.03.035, 2010. 
[10] Liu, J., Shen, J., Cheng, Z., Wang, P., Ying, Q., Zhao, Q., Zhang, Y., Zhao,Y., and Fu, Q.: Source apportionment and regional transport of anthropogenicsecondary organic aerosol during winter pollution periods in the YangtzeRiver Delta, China, Sci. Total Environ., 710, 135620, https://doi.org/10.1016/j.scitotenv.2019.135620, 2020. 
[11] Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contributionestimation of activity coefficients in nonideal liquid mixtures, AICHE J., 21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. 
[12] Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. 
[13] Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models, J. Geophys. Res., 113,D13103, https://doi.org/10.1029/2008jd009944, 2008. 
[14] Jathar, S. H., Mahmud, A., Barsanti, K. C., Asher, W. E., Pankow, J. F., andKleeman, M. J.: Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States,Atmos. Environ., 129, 142–154, https://doi.org/10.1016/j.atmosenv.2016.01.001, 2016. 
[15] Luo, Y. X., Zheng, X. B., Zhao, T. L., and Chen, J.: A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data, Int. J. Climatol., 34, 863–870, https://doi.org/10.1002/joc.3728, 2014. 
[16] Asa-Awuku, A., Nenes, A., Gao, S., Flagan, R. C., and Seinfeld, J. H.:Water-soluble SOA from Alkene ozonolysis: composition and droplet activationkinetics inferences from analysis of CCN activity, Atmos. Chem. Phys., 10,1585–1597, https://doi.org/10.5194/acp-10-1585-2010, 2010. 
[17] Zhang, H., Hu, J., Kleeman, M., and Ying, Q.: Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs, Sci. Total Environ., 490, 171–181, https://doi.org/10.1016/j.scitotenv.2014.04.064, 2014. 
[18] Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei,Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009. 
[19] Ansari, A. S. and Pandis, S. N.: Water Absorption by Secondary Organic Aerosol and Its Effect on Inorganic Aerosol Behavior, Environ. Sci. Technol., 34, 71–77, https://doi.org/10.1021/es990717q, 2000. 
[20] Ayers, G. P.: Comment on regression analysis of air quality data, Atmos.Environ., 35, 2423–2425, https://doi.org/10.1016/S1352-2310(00)00527-6, 2001. 
[21] Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C., and Walton, H. A.:Epidemiological time series studies of PM2.5 and daily mortality andhospital admissions: a systematic review and meta-analysis, Thorax, 69,660–665, https://doi.org/10.1136/thoraxjnl-2013-204492, 2014. 
[22] Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540, 2017. 
[23] Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R.C., Seinfeld, J. H., and Keutsch, F. N.: Glyoxal uptake on ammonium sulphateseed aerosol: reaction products and reversibility of uptake under dark andirradiated conditions, Atmos. Chem. Phys., 9, 3331–3345,https://doi.org/10.5194/acp-9-3331-2009, 2009. 
[24] Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q., and Pye, H. O. T.: Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning, Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, 2017. 
[25] Shi, Z., Li, J., Huang, L., Wang, P., Wu, L., Ying, Q., Zhang, H., Lu, L.,Liu, X., Liao, H., and Hu, J.: Source apportionment of fine particulatematter in China in 2013 using a source-oriented chemical transport model,Sci. Total Environ., 601–602, 1476–1487, https://doi.org/10.1016/j.scitotenv.2017.06.019, 2017. 
[26] Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.:Spatial and seasonal trends in particle concentration and optical extinctionin the United States, J. Geophys. Res., 99, 1347–1370, https://doi.org/10.1029/93JD02916, 1994. 
[27] Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., ElHaddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J.,Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H.,and Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formationfrom Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol.,51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017. 
[28] Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009. 
[29] Seinfeld, J. H., Erdakos, G. B., Asher, W. E., and Pankow, J. F.: Modelingthe Formation of Secondary Organic Aerosol (SOA). 2. The Predicted Effectsof Relative Humidity on Aerosol Formation in the α-Pinene-, β-Pinene-, Sabinene-, Δ3-Carene-, and Cyclohexene-Ozone Systems,Environ. Sci. Technol., 35, 1806–1817, https://doi.org/10.1021/es001765+, 2001. 
[30] Jiang, F., Liu, Q., Huang, X., Wang, T., Zhuang, B., and Xie, M.: Regionalmodeling of secondary organic aerosol over China using WRF/Chem, J. AerosolSci., 43, 57–73, https://doi.org/10.1016/j.jaerosci.2011.09.003, 2012. 
[31] Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkilä, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J.T., Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits,P., and Worsnop, D. R.: Relationship between aerosol oxidation level andhygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL045258, 2010. 
[32] Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr., J.R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., andWeber, R. J.: Fine-particle water and pH in the southeastern United States,Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, 2015. 
[33] Wang, H. B., Tian, M., Li, X. H., Chang, Q., Cao, J. J., Yang, F. M., Ma, Y. L., and He, K. B.: Chemical Composition and Light Extinction Contribution of PM2:5 in Urban Beijing for a 1-Year Period, Aerosol Air Qual. Res., 15, 2200–2211, https://doi.org/10.4209/aaqr.2015.04.0257, 2015. 
[34] Kim, Y., Sartelet, K., and Couvidat, F.: Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model, Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019, 2019. 
[35] Wang, K., Zhang, Y., Jang, C., Phillips, S., and Wang, B.: Modeling intercontinental air pollution transport over the trans-Pacific region in 2001 using the Community Multiscale Air Quality modeling system, J. Geophys. Res., 114, D04307, https://doi.org/10.1029/2008JD010807, 2009. 
[36] Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof,M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. S.,Rose, D., Su, H., and Pöschl, U.: Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution innortheastern China, J. Geophys. Res., 114, D00G08, https://doi.org/10.1029/2008JD010884, 2009. 
[37] Zhao, J., Qiu, Y., Zhou, W., Xu, W., Wang, J., Zhang, Y., Li, L., Xie, C.,Wang, Q., Du, W., Worsnop, D. R., Canagaratna, M. R., Zhou, L., Ge, X., Fu,P., Li, J., Wang, Z., Donahue, N. M., and Sun, Y.: Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing, J. Geophys. Res., 124, 10248–10263, https://doi.org/10.1029/2019jd030832, 2019. 
[38] Zhao, D. F., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Fuchs, H.,Kiendler-Scharr, A., Tillmann, R., Wahner, A., Watne, Å. K., Hallquist, M., Flores, J. M., Rudich, Y., Kristensen, K., Hansen, A. M. K., Glasius, M., Kourtchev, I., Kalberer, M., and Mentel, T. F.: Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA), Atmos. Chem. Phys., 16,1105–1121, https://doi.org/10.5194/acp-16-1105-2016, 2016. 
[39] Zhao, Y., Hennigan, C. J., May, A. A., Tkacik, D. S., de Gouw, J. A., Gilman, J. B., Kuster, W. C., Borbon, A., and Robinson, A. L.: Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol, Environ. Sci. Technol., 48, 13743–13750,https://doi.org/10.1021/es5035188, 2014. 
[40] Bergström, R., Denier van der Gon, H. A. C., Prévôt, A. S. H.,Yttri, K. E., and Simpson, D.: Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Phys., 12, 8499–8527, https://doi.org/10.5194/acp-12-8499-2012, 2012. 
[41] Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupledpartitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 02635–02643, https://doi.org/10.1021/es052297c, 2006. 
[42] Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren,L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary andsecondary aerosols in Beijing in winter: sources, variations and processes,Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016. 
[43] Denjean, C., Formenti, P., Picquet-Varrault, B., Pangui, E., Zapf, P., Katrib, Y., Giorio, C., Tapparo, A., Monod, A., Temime-Roussel, B., Decorse,P., Mangeney, C., and Doussin, J. F.: Relating hygroscopicity and opticalproperties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene, Atmos. Chem. Phys., 15, 3339–3358, https://doi.org/10.5194/acp-15-3339-2015, 2015. 
[44] Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic AerosolYields, Environ. Sci. Technol., 30, 2580–2585, https://doi.org/10.1021/es950943+, 1996. 
[45] Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F.K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missingin current models to explain secondary inorganic aerosol formation duringthe January 2013 haze episode in North China, Atmos. Chem. Phys., 15,2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015. 
[46] Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G.,Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants andgreenhouse gases over Asian regions during 2000–2008: Regional Emissioninventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058,https://doi.org/10.5194/acp-13-11019-2013, 2013. 
[47] Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations, J. Geophys. Res., 113, D18301, https://doi.org/10.1029/2007jd009735, 2008. 
[48] Pankow, J. F.: An absorption model of gas/particle partitioning of organiccompounds in the atmosphere, Atmos. Environ., 28, 185–188, https://doi.org/10.1016/1352-2310(94)90093-0, 1994. 
[49] Bowman, F. M. and Melton, J. A.: Effect of activity coefficient models onpredictions of secondary organic aerosol partitioning, J. Aerosol Sci., 35,1415–1438, https://doi.org/10.1016/j.jaerosci.2004.07.001, 2004. 
[50] He, Q., Gu, Y., and Zhang, M.: Spatiotemporal patterns of aerosol opticaldepth throughout China from 2003 to 2016, Sci. Total Environ., 653, 23–35,https://doi.org/10.1016/j.scitotenv.2018.10.307, 2019. 
[51] Sun, J., Liang, M., Shi, Z., Shen, F., Li, J., Huang, L., Ge, X., Chen, Q.,Sun, Y., Zhang, Y., Chang, Y., Ji, D., Ying, Q., Zhang, H., Kota, S. H., andHu, J.: Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai, Chemosphere, 221, 452–463, https://doi.org/10.1016/j.chemosphere.2018.12.200, 2019. 
[52] Boylan, J. W. and Russell, A. G.: PM and light extinction model performancemetrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006. 
[53] He, Q., Zhang, M., and Huang, B.: Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015, Atmos. Environ., 129, 79–90, https://doi.org/10.1016/j.atmosenv.2016.01.002, 2016. 
[54] Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A.,Barmpadimos, I., Prevot, A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. R., Worsnop, D. R., Collins, D. R., Tomlinson, J., and Baltensperger, U.: Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11, 1155–1165, https://doi.org/10.5194/acp-11-1155-2011, 2011. 
[55] Pankow, J. F., Marks, M. C., Barsanti, K. C., Mahmud, A., Asher, W. E., Li,J., Ying, Q., Jathar, S. H., and Kleeman, M. J.: Molecular view modeling ofatmospheric organic particulate matter: Incorporating molecular structureand co-condensation of water, Atmos. Environ., 122, 400–408, https://doi.org/10.1016/j.atmosenv.2015.10.001, 2015. 
[56] Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar,S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L.,Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall,G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicitmechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos.Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014. 
[57] Simon, H. and Bhave, P. V.: Simulating the Degree of Oxidation in Atmospheric Organic Particles, Environ. Sci. Technol., 46, 331–339, https://doi.org/10.1021/es202361w, 2012. 
[58] Budisulistiorini, S. H., Nenes, A., Carlton, A. G., Surratt, J. D., McNeill,V. F., and Pye, H. O. T.: Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS), Environ. Sci. Technol., 51, 5026–5034,https://doi.org/10.1021/acs.est.6b05750, 2017. 
[59] Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R.A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw,J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E.,Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation andaging of secondary organic aerosols in Los Angeles during CalNex 2010,Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, 2015. 
[60] Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K. F., Lee,S.-c., and Zhong, L.: Characterization of PM2.5 and the major chemicalcomponents during a 1-year campaign in rural Guangzhou, Southern China,Atmos. Res., 167, 208–215, https://doi.org/10.1016/j.atmosres.2015.08.007, 2016. 
[61] Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P.,Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits,P.: Laboratory studies of the chemical composition and cloud condensationnuclei (CCN) activity of secondary organic aerosol (SOA) and oxidizedprimary organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928,https://doi.org/10.5194/acp-11-8913-2011, 2011. 
[62] El-Sayed, M. M. H., Ortiz-Montalvo, D. L., and Hennigan, C. J.: The effectsof isoprene and NOx on secondary organic aerosols formed through reversibleand irreversible uptake to aerosol water, Atmos. Chem. Phys., 18, 1171–1184,https://doi.org/10.5194/acp-18-1171-2018, 2018. 
[63] Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D.,Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.:Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos.Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006. 
[64] Ying, Q., Li, J., and Kota, S. H.: Significant Contributions of Isoprene toSummertime Secondary Organic Aerosol in Eastern United States, Environ. Sci. Technol., 49, 7834–7842, https://doi.org/10.1021/acs.est.5b02514, 2015. 
[65] Petters, M. D. and Kreidenweis, S. M.: A single parameter representation ofhygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. 
[66] Prisle, N. L., Engelhart, G. J., Bilde, M., and Donahue, N. M.: Humidityinfluence on gas-particle phase partitioning of α-pinene +O3 secondary organic aerosol, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2009gl041402, 2010. 
[67] Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476–479, https://doi.org/10.1038/nature13032, 2014. 
[68] Cappa, C. D., Lovejoy, E. R., and Ravishankara, A. R.: Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components, P. Natl. Acad. Sci. USA, 105, 18687–18691, https://doi.org/10.1073/pnas.0802144105, 2008. 
[69] Li, J., Cleveland, M., Ziemba, L. D., Griffin, R. J., Barsanti, K. C., Pankow, J. F., and Ying, Q.: Modeling regional secondary organic aerosolusing the Master Chemical Mechanism, Atmos. Environ., 102, 52–61, https://doi.org/10.1016/j.atmosenv.2014.11.054, 2015. 
[70] Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H.,Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J.D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369,https://doi.org/10.5194/acp-17-343-2017, 2017. 
[71] Hu, J., Wang, P., Ying, Q., Zhang, H., Chen, J., Ge, X., Li, X., Jiang, J.,Wang, S., Zhang, J., Zhao, Y., and Zhang, Y.: Modeling biogenic and anthropogenic secondary organic aerosol in China, Atmos. Chem. Phys., 17,77–92, https://doi.org/10.5194/acp-17-77-2017, 2017. 
[72] Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013. 
[73] Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and Zhu, T. F.: Inhalable Microorganisms in Beijing's PM2.5 and PM10 Pollutants during a Severe Smog Event, Environ. Sci. Technol., 48, 1499–1507, https://doi.org/10.1021/es4048472, 2014. 
[74] Tkacik, D. S., Presto, A. A., Donahue, N. M., and Robinson, A. L.: SecondaryOrganic Aerosol Formation from Intermediate-Volatility Organic Compounds:Cyclic, Linear, and Branched Alkanes, Environ. Sci. Technol., 46, 8773–8781, https://doi.org/10.1021/es301112c, 2012. 
[75] Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity:potential contribution of semi-volatile and intermediate volatility primaryorganic compounds to secondary organic aerosol formation, Atmos. Chem. Phys., 10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010. 
[76] Qiao, X., Ying, Q., Li, X., Zhang, H., Hu, J., Tang, Y., and Chen, X.: Source apportionment of PM2.5 for 25 Chinese provincial capitals andmunicipalities using a source-oriented Community Multiscale Air Qualitymodel, Sci. Total Environ., 612, 462–471, https://doi.org/10.1016/j.scitotenv.2017.08.272, 2018. 
[77] Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling andperformance evaluation for two texas episodes, Report to the Texas NaturalResources Conservation Commission, prepared by ENVIRON, International Corp.,Novato, CA, available at: https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf(last access: 10 May 2019), 2001. 
[78] Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G.,Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model Representation ofSecondary Organic Aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553–8560, https://doi.org/10.1021/es100636q, 2010. 
[79] Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-targetaerosol products over land, Atmos. Chem. Phys., 10, 10399–10420,https://doi.org/10.5194/acp-10-10399-2010, 2010. 
[80] Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone andparticulate matter in China using WRF/CMAQ modeling system, Atmos. Chem.Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, 2016. 
[81] Healy, R. M., Temime, B., Kuprovskyte, K., and Wenger, J. C.: Effect ofRelative Humidity on Gas/Particle Partitioning and Aerosol Mass Yield in thePhotooxidation of p-Xylene, Environ. Sci. Technol., 43, 1884–1889,https://doi.org/10.1021/es802404z, 2009. 
[82] Li, X., Song, S., Zhou, W., Hao, J., Worsnop, D. R., and Jiang, J.: Interactions between aerosol organic components and liquid water contentduring haze episodes in Beijing, Atmos. Chem. Phys., 19, 12163–12174,https://doi.org/10.5194/acp-19-12163-2019, 2019. 
[83] Chang, R. Y. W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J.,Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicityparameter (κ) of ambient organic aerosol at a field site subject tobiogenic and anthropogenic influences: relationship to degree of aerosoloxidation, Atmos. Chem. Phys., 10, 5047–5064, https://doi.org/10.5194/acp-10-5047-2010, 2010. 
[84] Lim, Y. B., Tan, Y., and Turpin, B. J.: Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidationof methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13,8651–8667, https://doi.org/10.5194/acp-13-8651-2013, 2013. 
[85] Li, J., Zhang, M., Wu, F., Sun, Y., and Tang, G.: Assessment of the impactsof aromatic VOC emissions and yields of SOA on SOA concentrations with theair quality model RAMS-CMAQ, Atmos. Environ., 158, 105–115, https://doi.org/10.1016/j.atmosenv.2017.03.035, 2017. 
[86] Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.:Real-time chemical characterization of atmospheric particulate matter inChina: A review, Atmos. Environ., 158, 270–304, https://doi.org/10.1016/j.atmosenv.2017.02.027, 2017. 
[87] Ying, Q., Cureño, I. V., Chen, G., Ali, S., Zhang, H., Malloy, M., Bravo, H. A., and Sosa, R.: Impacts of Stabilized Criegee Intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone, Atmos. Environ., 94, 438–447, https://doi.org/10.1016/j.atmosenv.2014.05.056, 2014. 
[88] Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 usingthe CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, 2016. 
[89] Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J.A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): ahigh resolution global model to estimate the emissions from open burning,Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011. 
文献评价指标
浏览 80次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次