首页 » 文章 » 文章详细信息
Atmospheric Chemistry and Physics Volume 20 ,Issue 11 ,2020-06-15
Volatile organic compounds and ozone air pollution in an oil production region in northern China
Tianshu Chen 1 Likun Xue 1 , 2 Penggang Zheng 1 Yingnan Zhang 1 Yuhong Liu 1 Jingjing Sun 1 Guangxuan Han 3 Hongyong Li 1 Xin Zhang 1 , 4 Yunfeng Li 1 , 4 Hong Li 4 Can Dong 1 Fei Xu 1 , 2 Qingzhu Zhang 1 Wenxing Wang 1
Show affiliations
DOI:10.5194/acp-20-7069-2020
PDF
摘要

Oil and natural gas (O&NG) exploration presents a significant source of atmospheric volatile organic compounds (VOCs), which are central players of tropospheric chemistry and contribute to formations of ozone (O3) and secondary organic aerosols. The impacts of O&NG extraction on regional air quality have been investigated in recent years in North America, but have long been overlooked in China. To assess the impacts of O&NG exploration on tropospheric O3 and regional air quality in China, intensive field observations were conducted during February–March and June–July 2017 in the Yellow River delta, an oil extraction region in northern China. Very high concentrations of ambient VOCs were observed at a rural site, with the highest alkane mixing ratios reaching 2498 ppbv. High-O3 episodes were not encountered during wintertime but were frequently observed in summer. The emission profiles of VOCs from the oil fields were directly measured for the first time in China. The chemical budgets of ROx radicals and O3 were dissected with a detailed chemical box model constrained by in situ observations. The highly abundant VOCs facilitated strong atmospheric oxidation capacity and O3 formation in the region. Oxygenated VOCs (OVOCs) played an essential role in the ROx primary production, OH loss, and radical recycling. Photolysis of OVOCs, O3, and HONO as well as ozonolysis reactions of unsaturated VOCs were major primary sources of ROx. NOx was the limiting factor of radical recycling and O3 formation. This study underlines the important impacts of O&NG extraction on atmospheric chemistry and regional air quality in China.

授权许可

Copyright: © 2020 Tianshu Chen et al.
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

推荐引用方式

Tianshu Chen,Likun Xue,Penggang Zheng,Yingnan Zhang,Yuhong Liu,Jingjing Sun,Guangxuan Han,Hongyong Li,Xin Zhang,Yunfeng Li,Hong Li,Can Dong,Fei Xu,Qingzhu Zhang,Wenxing Wang. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmospheric Chemistry and Physics ,Vol.20, Issue 11(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Xu, W., Xu, X., Lin, M., Lin, W., Tarasick, D., Tang, J., Ma, J., and Zheng, X.: Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability, Atmos. Chem. Phys., 18, 773–798, https://doi.org/10.5194/acp-18-773-2018, 2018. 
[2] Field, R. A., Soltis, J., McCarthy, M. C., Murphy, S., and Montague, D. C.: Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter, Atmos. Chem. Phys., 15, 3527–3542, https://doi.org/10.5194/acp-15-3527-2015, 2015. 
[3] Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.:Chemistry and oxidation capacity of the nitrate radical in the continentalboundary layer near Berlin, J. Geophys. Res.-Atmos., 106, 8013–8025,https://doi.org/10.1029/2000jd900681, 2001. 
[4] Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009. 
[5] Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H.,Lefer, B., Rappenglueck, B., Flynn, J., and Leuchner, M.: Atmosphericoxidation capacity in the summer of Houston 2006: Comparison with summermeasurements in other metropolitan studies, Atmos. Environ., 44,4107–4115, https://doi.org/10.1016/j.atmosenv.2009.01.013, 2010. 
[6] Field, R. A., Soltis, J., and Murphy, S.: Air quality concerns ofunconventional oil and natural gas production, Environ. Sci.-Proc Imp.,16, 954–969, https://doi.org/10.1039/c4em00081a, 2014. 
[7] Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W., and Xu, X.: Significant increase of surface ozone at a rural site, north of eastern China, Atmos. Chem. Phys., 16, 3969–3977, https://doi.org/10.5194/acp-16-3969-2016, 2016. 
[8] Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. 
[9] Lu, S., Bai, Y., and Zhang, G.: Study on the characteristics of VOCs sourceprofiles of vehicle exhaust and gasoline emission, Acta ScicentiarumNaturalum Universitis Pekinesis, 39, 507–511, 2003. 
[10] British Petroleum Company plc.: BP statistical review of world energy2018, available at: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf(last access: 13 August 2019), 2018. 
[11] Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., andHamburg, S. P.: Greater focus needed on methane leakage from natural gasinfrastructure, P. Natl. Acad. Sci. USA, 109, 6435–6440,https://doi.org/10.1073/pnas.1202407109, 2012. 
[12] Xue, L., Wang, T., Louie, P. K., Luk, C. W., Blake, D. R., and Xu, Z.:Increasing external effects negate local efforts to control ozone airpollution: a case study of Hong Kong and implications for other Chinesecities, Environ. Sci. Technol., 48, 10769–10775,https://doi.org/10.1021/es503278g, 2014. 
[13] Seo, S.: A review and comparison of methods for detecting outliers inunivariate data sets, University of Pittsburgh, available at: http://d-scholarship.pitt.edu/7948/ (last access: 4 June 2020), 2006. 
[14] Cardelino, C. and Chameides, W.: An observation-based model for analyzingozone precursor relationships in the urban atmosphere, J. Air Waste Manage.,45, 161–180, https://doi.org/10.1080/10473289.1995.10467356, 1995. 
[15] Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V.,and White, A. B.: Rapid photochemical production of ozone at highconcentrations in a rural site during winter, Nat. Geosci., 2, 120,https://doi.org/10.1038/ngeo415, 2009. 
[16] Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability, Atmos. Chem. Phys., 8, 2595–2607, https://doi.org/10.5194/acp-8-2595-2008, 2008. 
[17] Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode, Atmos. Chem. Phys., 16, 9891–9903, https://doi.org/10.5194/acp-16-9891-2016, 2016. 
[18] EIA (Energy Information Administration): Annual Energy Outlook 2018: WithProjections to 2050, available at:https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf (last access: 13 August 2019), 2018. 
[19] Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M.,Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., and Lamb,B. K.: Measurements of methane emissions at natural gas production sites inthe United States, P. Natl. Acad. Sci. USA, 110, 17768–17773,https://doi.org/10.1073/pnas.1304880110, 2013. 
[20] Xue, L. K., Wang, T., Guo, H., Blake, D. R., Tang, J., Zhang, X. C., Saunders, S. M., and Wang, W. X.: Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory, Atmos. Chem. Phys., 13, 8551–8567, https://doi.org/10.5194/acp-13-8551-2013, 2013. 
[21] EIA (Energy Information Administration): Production of Crude Oil includingLease Condensate 2016, available at:https://www.eia.gov/beta/international/data/browser/ (last access: 13 August 2019), 2017. 
[22] Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006, Atmos. Chem. Phys., 13, 1057–1080, https://doi.org/10.5194/acp-13-1057-2013, 2013. 
[23] Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569, https://doi.org/10.5194/acp-12-1541-2012, 2012. 
[24] EIA (Energy Information Administration): Shale oil and shale gas resourcesare globally abundant, available at:https://www.eia.gov/todayinenergy/detail.php?id=14431 (last access: 13 August 2019), 2014. 
[25] Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243–11260, https://doi.org/10.5194/acp-10-11243-2010, 2010. 
[26] Li, Z., Xue, L., Yang, X., Zha, Q., Tham, Y. J., Yan, C., Louie, P. K., Luk, C. W., Wang, T., and Wang, W.:Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China,Sci. Total Environ., 612, 1114–1122,https://doi.org/10.1016/j.scitotenv.2017.08.310, 2018. 
[27] Rohrer, F. and Berresheim, H.: Strong correlation between levels oftropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442,184, https://doi.org/10.1038/nature04924, 2006. 
[28] Adgate, J. L., Goldstein, B. D., and McKenzie, L. M.: Potential public healthhazards, exposures and health effects from unconventional natural gasdevelopment, Environ. Sci. Technol., 48, 8307–8320,https://doi.org/10.1021/es404621d, 2014. 
[29] Rutter, A. P., Griffin, R. J., Cevik, B. K., Shakya, K. M., Gong, L., Kim, S.,Flynn, J. H., and Lefer, B. L.: Sources of air pollution in a region of oil andgas exploration downwind of a large city, Atmos. Environ., 120, 89–99,https://doi.org/10.1016/j.atmosenv.2015.08.073, 2015. 
[30] Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P. R., Warneke, C., Wild, R., Williams, E. J., Yuan, B., and Zamora, R.: Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US, Atmos. Chem. Phys., 15, 411–429, https://doi.org/10.5194/acp-15-411-2015, 2015. 
[31] Rodriguez, M. A., Barna, M. G., and Moore, T.: Regional impacts of oil andgas development on ozone formation in the western United States, J. AirWaste Manage., 59, 1111–1118, https://doi.org/10.3155/1047-3289.59.9.1111,2009. 
[32] Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, 2014. 
[33] Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19, 7129–7150, https://doi.org/10.5194/acp-19-7129-2019, 2019a. 
[34] Zhao, N., Zhang, Q., and Wang, W.: Atmospheric oxidation of phenanthreneinitiated by OH radicals in the presence of O2 and NOx – A theoreticalstudy, Sci. Total Environ., 563, 1008–1015,https://doi.org/10.1016/j.scitotenv.2016.01.089, 2016. 
[35] Gilman, J. B., Lerner, B. M., Kuster, W. C., and De Gouw, J.: Sourcesignature of volatile organic compounds from oil and natural gas operationsin northeastern Colorado, Environ. Sci. Technol., 47, 1297–1305,https://doi.org/10.1021/es304119a, 2013. 
[36] Ren, X., Brune, W. H., Mao, J., Mitchell, M. J., Lesher, R. L., Simpas, J. B.,Metcalf, A. R., Schwab, J. J., Cai, C., Li, Y., and Demerjian, K. L.: OH,HO2, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002campaign: Observations and model comparison, J. Geophys. Res.-Atmos.,111, D10S03, https://doi.org/10.1029/2005jd006126, 2006. 
[37] Neemann, E. M., Crosman, E. T., Horel, J. D., and Avey, L.: Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah, Atmos. Chem. Phys., 15, 135–151, https://doi.org/10.5194/acp-15-135-2015, 2015. 
[38] Edwards, P. M., Young, C. J., Aikin, K., deGouw, J., Dubé, W. P., Geiger, F., Gilman, J., Helmig, D., Holloway, J. S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D. D., Peischl, J., Roberts, J. M., Ryerson, T. B., Thornton, J., Warneke, C., Williams, E. J., and Brown, S. S.: Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, 2013. 
[39] Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y.,Koike, M., Tanimoto, H., Takegawa, N., and Kondo, Y.: Urban photochemistry incentral Tokyo: 1. Observed and modeled OH and HO2 radicalconcentrations during the winter and summer of 2004, J. Geophys.Res.-Atmos., 112, D21312, https://doi.org/10.1029/2007jd008670, 2007. 
[40] National Research Council: Rethinking the ozone problem in urban andregional air pollution, National Academies Press, Washington, DC,https://doi.org/10.17226/1889, 1992. 
[41] Sun, J., Li, Z., Xue, L., Wang, T., Wang, X., Gao, J., Nie, W., Simpson,I. J., Gao, R., Blake, D. R., and Chai, F.: Summertime C1–C5 alkylnitrates over Beijing, northern China: Spatial distribution, regionaltransport, and formation mechanisms, Atmos. Res., 204, 102–109,https://doi.org/10.1016/j.atmosres.2018.01.014, 2018. 
[42] Helmig, D., Thompson, C., Evans, J., Boylan, P., Hueber, J., and Park, J.-H.:Highly elevated atmospheric levels of volatile organic compounds in theUintah Basin, Utah, Environ. Sci. Technol., 48, 4707–4715,https://doi.org/10.1021/es405046r, 2014. 
[43] Olaguer, E. P.: The potential near-source ozone impacts of upstream oil andgas industry emissions, J. Air Waste Manage., 62, 966–977,https://doi.org/10.1080/10962247.2012.688923, 2012. 
[44] Zhang, Y. H., Su, H., Zhong, L. J., Cheng, Y. F., Zeng, L. M., Wang, X. S.,Xiang, Y. R., Wang, J. L., Gao, D. F., Shao, M., and Fan, S. J.: Regional ozonepollution and observation-based approach for analyzing ozone–precursorrelationship during the PRIDE-PRD2004 campaign, Atmos. Environ., 42,6203–6218, https://doi.org/10.1016/j.atmosenv.2008.05.002, 2008. 
[45] Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z., Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation, Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, 2019b. 
[46] Sun, L., Xue, L., Wang, T., Gao, J., Ding, A., Cooper, O. R., Lin, M., Xu, P., Wang, Z., Wang, X., Wen, L., Zhu, Y., Chen, T., Yang, L., Wang, Y., Chen, J., and Wang, W.: Significant increase of summertime ozone at Mount Tai in Central Eastern China, Atmos. Chem. Phys., 16, 10637–10650, https://doi.org/10.5194/acp-16-10637-2016, 2016. 
[47] EGR (Eastern Research Group): City of Fort Worth Natural Gas Air QualityStudy, Morrisville, NC, 2011. 
[48] Zhang, Y., Sun, J., Zheng, P., Chen, T., Liu, Y., Han, G., Simpson, I. J.,Wang, X., Blake, D. R., Li, Z., and Yang, X.: Observations of C1–C5alkyl nitrates in the Yellow River Delta, northern China: Effects of biomassburning and oil field emissions, Sci. Total Environ., 656, 129–139,https://doi.org/10.1016/j.scitotenv.2018.11.208, 2019. 
[49] Edwards, P. M., Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., Degouw,J. A., Dubé, W. P., Field, R. A., Flynn, J. H., Gilman, J. B., and Graus, M.:High winter ozone pollution from carbonyl photolysis in an oil and gasbasin, Nature, 514, 351, https://doi.org/10.1038/nature13767, 2014. 
[50] Vinciguerra, T., Yao, S., Dadzie, J., Chittams, A., Deskins, T., Ehrman, S.,and Dickerson, R. R.: Regional air quality impacts of hydraulic fracturingand shale natural gas activity: Evidence from ambient VOC observations,Atmos. Environ., 110, 144–150,https://doi.org/10.1016/j.atmosenv.2015.03.056, 2015. 
[51] Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals, Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, 2017. 
[52] Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L., Nölscher, A. C., Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China, Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, 2017. 
[53] Wang, T., Wei, X. L., Ding, A. J., Poon, C. N., Lam, K. S., Li, Y. S., Chan, L. Y., and Anson, M.: Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007, Atmos. Chem. Phys., 9, 6217–6227, https://doi.org/10.5194/acp-9-6217-2009, 2009. 
[54] Yuan, B., Shao, M., de Gouw, J., Parrish, D.D., Lu, S., Wang, M., Zeng, L.,Zhang, Q., Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds (VOCs)in urban air: How chemistry affects the interpretation of positive matrixfactorization (PMF) analysis, J. Geophys. Res.-Atmos., 117, D24302,https://doi.org/10.1029/2012JD018236, 2012. 
[55] McKenzie, L. M., Witter, R. Z., Newman, L. S., and Adgate, J. L.: Humanhealth risk assessment of air emissions from development of unconventionalnatural gas resources, Sci. Total Environ., 424, 79–87,https://doi.org/10.1016/j.scitotenv.2012.02.018, 2012. 
[56] Kemball-Cook, S., Bar-Ilan, A., Grant, J., Parker, L., Jung, J., Santamaria,W., Mathews, J., and Yarwood, G.: Ozone impacts of natural gas development inthe Haynesville Shale, Environ. Sci. Technol., 44, 9357–9363,https://doi.org/10.1021/es1021137, 2010. 
[57] Carter, W. P. and Seinfeld, J. H.: Winter ozone formation and VOCincremental reactivities in the Upper Green River Basin of Wyoming, Atmos.Environ., 50, 255–266, https://doi.org/10.1016/j.atmosenv.2011.12.025, 2012. 
[58] Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher,R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., and Jobson, B. T.:OH and HO2 concentrations, sources, and loss rates during the SouthernOxidants Study in Nashville, Tennessee, summer 1999, J. Geophys.Res.-Atmos., 108, 4617, https://doi.org/10.1029/2003jd003551, 2003. 
[59] McDuffie, E. E., Edwards, P. M., Gilman, J. B., Lerner, B. M., Dubé, W. P.,Trainer, M., Wolfe, D. E., Angevine, W. M., deGouw, J., Williams, E. J., andTevlin, A. G.: Influence of oil and gas emissions on summertime ozone in theColorado Northern Front Range, J. Geophys. Res.-Atmos., 121, 8712–8729,https://doi.org/10.1002/2016jd025265, 2016. 
[60] Koss, A. R., de Gouw, J., Warneke, C., Gilman, J. B., Lerner, B. M., Graus, M., Yuan, B., Edwards, P., Brown, S. S., Wild, R., Roberts, J. M., Bates, T. S., and Quinn, P. K.: Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event, Atmos. Chem. Phys., 15, 5727–5741, https://doi.org/10.5194/acp-15-5727-2015, 2015. 
[61] Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., and Wang, Y.: Sourceapportionment of VOCs and the contribution to photochemical ozone formationduring summer in the typical industrial area in the Yangtze River Delta,China, Atmos. Res., 176, 64–74,https://doi.org/10.1016/j.atmosres.2016.02.015, 2016. 
[62] Lee, L., Wooldridge, P. J., Gilman, J. B., Warneke, C., de Gouw, J., and Cohen, R. C.: Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study, Atmos. Chem. Phys., 14, 12441–12454, https://doi.org/10.5194/acp-14-12441-2014, 2014. 
[63] Yang, X., Xue, L., Wang, T., Wang, X., Gao, J., Lee, S., Blake, D. R., Chai,F., and Wang, W.: Observations and explicit modeling of summertime carbonylformation in Beijing: Identification of key precursor species and theirimpact on atmospheric oxidation chemistry, J. Geophys. Res.-Atmos., 123,1426–1440, https://doi.org/10.1002/2017JD027403, 2018. 
[64] Dang, J., Shi, X., Hu, J., Chen, J., Zhang, Q., and Wang, W.: Mechanistic andkinetic studies on OH-initiated atmospheric oxidation degradation of benzo[α] pyrene in the presence of O2 and NOx, Chemosphere, 119,387–393, https://doi.org/10.1016/j.chemosphere.2014.07.001, 2015. 
[65] Simpson, I. J., Blake, N. J., Barletta, B., Diskin, G. S., Fuelberg, H. E., Gorham, K., Huey, L. G., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Yang, M., and Blake, D. R.: Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, Atmos. Chem. Phys., 10, 11931–11954, https://doi.org/10.5194/acp-10-11931-2010, 2010. 
[66] Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozonepollution in China: A review of concentrations, meteorological influences,chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596,https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017. 
[67] Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, 2014. 
[68] Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmos. Chem. Phys., 8, 1–13, https://doi.org/10.5194/acp-8-1-2008, 2008. 
[69] Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T., and Heard, D. E.: Concentrations of OH and HO2 radicals during NAMBLEX: measurements and steady state analysis, Atmos. Chem. Phys., 6, 1435–1453, https://doi.org/10.5194/acp-6-1435-2006, 2006. 
[70] Colborn, T., Schultz, K., Herrick, L., and Kwiatkowski, C.: An exploratorystudy of air quality near natural gas operations, Hum. Ecol. Risk Assess.,20, 86–105, https://doi.org/10.1080/10807039.2012.749447, 2014. 
[71] Statista: Leading countries based on natural gas production in 2016 (inbillion cubic meters), available at:https://www.statista.com/statistics/264771/top-countries-based-on-natural-gas-production/ (last access: last access: 4 June 2020),2018. 
[72] Xue, L. K., Saunders, S. M., Wang, T., Gao, R., Wang, X. F., Zhang, Q. Z., and Wang, W. X.: Development of a chlorine chemistry module for the Master Chemical Mechanism, Geosci. Model Dev., 8, 3151–3162, https://doi.org/10.5194/gmd-8-3151-2015, 2015. 
[73] Williams, J., Kessel, S. U., Nolscher, A. C., Yang, Y. D., Lee, Y.,Yanez-Serrano, A. M., Wolff, S., Kesselmeier, J., Klupfel, T., Lelieveld,J., and Shao, M.: Opposite OH reactivity and ozone cycles in the Amazonrainforest and megacity Beijing: Subversion of biospheric oxidant control byanthropogenic emissions, Atmos. Environ., 125, 112–118,https://doi.org/10.1016/j.atmosenv.2015.11.007, 2016. 
文献评价指标
浏览 268次
下载全文 5次
评分次数 2次
用户评分 5.0分
分享 0次