首页 » 文章 » 文章详细信息
COMPLEXITY Volume 2020 ,2020-05-11
A Globally Optimal Robust Design Method for Complex Systems
Research Article
Yue Chen 1 , 2 Jian Shi 1 , 2 Xiao-jian Yi 1 , 3 , 4
Show affiliations
DOI:10.1155/2020/3697161
Received 2019-12-19, accepted for publication 2020-04-08, Published 2020-05-11
PDF
摘要

The uncertainty of the engineering system increases with the growing complexity of the engineering system; therefore, the tolerance to the uncertainty is essential. In the design phase, the output performance should reach the design criterion, even under large variations of design parameters. The tolerance to design parameter variations may be measured by the size of a solution space in which the output performance is guaranteed to deliver the required performance. In order to decouple dimensions, a maximum solution hyperbox, expressed by intervals with respect to each design parameter, is sought. The proposed approach combines the metaheuristic algorithm with the DIRECT algorithm where the former is used to seek the maximum size of hyperbox, and the latter is used as a checking technique that guarantees the obtained hyperbox is indeed a solution hyperbox. There are three advantages of the proposed approach. First, it is a global search and has a considerable high possibility to produce the globally maximum solution hyperbox. Second, it can be used for both analytically known and black-box performance functions. Third, it guarantees that any point selected within the obtained hyperbox satisfies the performance criterion as long as the performance function is continuous. Furthermore, the proposed approach is illustrated by numerical examples and real examples of complex systems. Results show that the proposed approach outperforms the GHZ and CES-IA methods in the literature.

授权许可

Copyright © 2020 Yue Chen et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Jian Shi.Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, cas.cn;School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China, ucas.ac.cn.jshi@iss.ac.cn
2. Xiao-jian Yi.Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, cas.cn;Department of Overall Technology, China North Vehicle Research Institute, Beijing 100072, China, noveri.com.cn;School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China, bit.edu.cn.yixiaojianbit@sina.cn

推荐引用方式

Yue Chen,Jian Shi,Xiao-jian Yi. A Globally Optimal Robust Design Method for Complex Systems. COMPLEXITY ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. R. Jones, C. D. Perttunen, B. E. Stuckman. (1993). Lipschitzian optimization without the lipschitz constant. Journal of Optimization Theory and Applications.79(1):157-181. DOI: 10.2514/6.2000-4929.
[2] L. Graff, H. Harbrecht, M. Zimmermann. (2016). On the computation of solution spaces in high dimensions. Structural and Multidisciplinary Optimization.54(4):811-829. DOI: 10.2514/6.2000-4929.
[3] R. Paulavičius, L. Chiter, J. Žilinskas. (2018). Global optimization based on bisection of rectangles, function values at diagonals, and a set of lipschitz constants. Journal of Global Optimization.71(1):5-20. DOI: 10.2514/6.2000-4929.
[4] C. M. Rocco, J. A. Moreno, N. Carrasquero. (2003). Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. Reliability Engineering & System Safety.79(2):149-159. DOI: 10.2514/6.2000-4929.
[5] L. Chiter. (2006). A new sampling method in the DIRECT algorithm. Applied Mathematics and Computation.175(1):297-306. DOI: 10.2514/6.2000-4929.
[6] E. A. Bender. (2000). An Introduction to Mathematical Modeling. DOI: 10.2514/6.2000-4929.
[7] E. M. T. Hendrix, C. J. Mecking, T. H. B. Hendriks. (1996). Finding robust solutions for product design problems. European Journal of Operational Research.92(1):28-36. DOI: 10.2514/6.2000-4929.
[8] N. Hansen. (2006). The CMA evolution strategy: a comparing review, towards a new evolutionary computation. Advances in Estimation of Distribution Algorithms. DOI: 10.2514/6.2000-4929.
[9] H. S. Huang. Distributed genetic algorithm for optimization of wind farm annual profits. . DOI: 10.2514/6.2000-4929.
[10] E. Alba, J. M. Troya. (1999). A survey of parallel distributed genetic algorithms. Complexity.4(4):31-52. DOI: 10.2514/6.2000-4929.
[11] C. Igel, T. Suttorp, N. Hansen. A computational efficient covariance matrix update and a (1+1)-cma for evolution strategies. . DOI: 10.2514/6.2000-4929.
[12] M. Björkman, K. Holmström. (1999). Global optimization using the direct algorithm in matlab. Matlab Advanced Modeling & Optimization.1(2):1-8. DOI: 10.2514/6.2000-4929.
[13] M. Claudio, S. Rocco, E. Hernandez. (2015). Robustness and sensitivity analysis in multiple criteria decision problems using rule learner techniques. Reliability Engineering & System Safety.134:297-304. DOI: 10.2514/6.2000-4929.
[14] R. E. Moore. (1966). Interval Analysis. DOI: 10.2514/6.2000-4929.
[15] Y. Chen, J. Shi, X. J. Yi. (2020). A new reliable operating region design method. Mathematical Problems in Engineering.2020-12. DOI: 10.2514/6.2000-4929.
[16] F. Turki, H. Gritli, S. Belghith. (2019). Robust position control of a two-sided 1-dof impacting mechanical oscillator subject to an external persistent disturbance by means of a state-feedback controller. Complexity.2019-14. DOI: 10.2514/6.2000-4929.
[17] B. O. Shubert. (1972). A sequential method seeking the global maximum of a function. SIAM Journal on Numerical Analysis.9(3):379-388. DOI: 10.2514/6.2000-4929.
[18] D. E. Kvasov, Y. D. Sergeyev. (2015). Deterministic approaches for solving practical black-box global optimization problems. Advances in Engineering Software.80:58-66. DOI: 10.2514/6.2000-4929.
[19] S. A. Piyavskii. (1967). An algorithm for finding the absolute minimum of a function. Theory of Optimal Decisions.2(13–24). DOI: 10.2514/6.2000-4929.
[20] Y. D. Sergeyev, D. E. Kvasov. (2015). A deterministic global optimization using smooth diagonal auxiliary functions. Communications in Nonlinear Science and Numerical Simulation.21(1–3):99-111. DOI: 10.2514/6.2000-4929.
[21] D. Lera, Y. D. Sergeyev. (2018). GOSH: derivative-free global optimization using multi-dimensional space-filling curves. Journal of Global Optimization.71(1):193-211. DOI: 10.2514/6.2000-4929.
[22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller. et al.(1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics.21(6):1087-1092. DOI: 10.2514/6.2000-4929.
[23] Y. D. Sergeyev, P. Pugliese, D. Famularo. (2003). Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Mathematical Programming.96(3):489-512. DOI: 10.2514/6.2000-4929.
[24] V. Ravi, B. S. N. Murty, J. Reddy. (1997). Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems. IEEE Transactions on Reliability.46(2):233-239. DOI: 10.2514/6.2000-4929.
[25] N. Hansen, A. Ostermeier. (2001). Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation.9(2):159-195. DOI: 10.2514/6.2000-4929.
[26] F. Kursawe. (1993). Evolution strategies-simple models of natural process?. Revue Internationale de Systemique.7(5):627-642. DOI: 10.2514/6.2000-4929.
[27] Y.-G. Zhao, T. Ono. (1999). A general procedure for first/second-order reliabilitymethod (FORM/SORM). Structural Safety.21(2):95-112. DOI: 10.2514/6.2000-4929.
[28] L. Chiter. (2006). DIRECT algorithm: a new definition of potentially optimal hyperrectangles. Applied Mathematics and Computation.179(2):742-749. DOI: 10.2514/6.2000-4929.
[29] A. Saltelli, M. Scott. (1997). Guest editorial: the role of sensitivity analysis in the corroboration of models and itslink to model structural and parametric uncertainty. Reliability Engineering & System Safety.57(1):1-4. DOI: 10.2514/6.2000-4929.
[30] M. Zimmermann, J. E. von Hoessle. (2013). Computing solution spaces for robust design. International Journal for Numerical Methods in Engineering.94(3):290-307. DOI: 10.2514/6.2000-4929.
[31] Y. D. Sergeyev, D. E. Kvasov. (2006). Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM Journal on Optimization.16(3):910-937. DOI: 10.2514/6.2000-4929.
[32] G.-J. Park, T.-H. Lee, K. H. Lee, K.-H. Hwang. et al.(2006). Robust design: an overview. AIAA Journal.44(1):181-191. DOI: 10.2514/6.2000-4929.
[33] R. Paulavičius, J. Žilinskas, A. Grothey. (2010). Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of lipschitz bounds. Optimization Letters.4(2):173-183. DOI: 10.2514/6.2000-4929.
[34] L. Stripinis, R. Paulavičius, J. Ž.and iči. (2018). Improved scheme for selection of potentially optimal hyper-rectangles in direct. Optimization Letters.12(7):1699-1712. DOI: 10.2514/6.2000-4929.
[35] N. Hansen. (2016). The CMA evolution strategy: a tutorial. . DOI: 10.2514/6.2000-4929.
[36] A. Neumaier. (1990). Interval Methods for Systems of Equations. DOI: 10.2514/6.2000-4929.
[37] X.-J. Yi, J. Shi, B. S. Dhillon, P. Hou. et al.(2018). A new reliability analysis method for repairable systems with closed-loop feedback links. Quality and Reliability Engineering International.34(3):298-332. DOI: 10.2514/6.2000-4929.
[38] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. (1983). Optimization by simulated annealing. Science.220(4598):671-680. DOI: 10.2514/6.2000-4929.
[39] Y. D. Sergeyev, D. E. Kvasov, M. S. Mukhametzhanov. (2018). On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Scientific Reports.8(1):1-9. DOI: 10.2514/6.2000-4929.
[40] B. Wang, X. Chen, F. M. Xin, X. Song. et al.(2019). MI-based robust waveform design in radar and jammer games. Complexity.2019-14. DOI: 10.2514/6.2000-4929.
[41] D. Lera, Y. D. Sergeyev. (2013). Acceleration of univariate global optimization algorithms working with lipschitz functions and lipschitz first derivatives. SIAM Journal on Optimization.23(1):508-529. DOI: 10.2514/6.2000-4929.
[42] G. Taguchi, E. Elsayed, T. Hsiang. (1989). Quality Engineering in Production Systems. DOI: 10.2514/6.2000-4929.
[43] R. Paulavičius, Y. D. Sergeyev, D. E. Kvasov, J. Žilinskas. et al.(2014). Globally-biased disimpl algorithm for expensive global optimization. Journal of Global Optimization.59(2-3):545-567. DOI: 10.2514/6.2000-4929.
[44] W. L. Goffe, G. D. Ferrier, J. Rogers. (1994). Global optimization of statistical functions with simulated annealing. Journal of Econometrics.60(1-2):65-99. DOI: 10.2514/6.2000-4929.
[45] W. L. Oberkampf. (2005). Uncertainty Quantification Using Evidence Theory. DOI: 10.2514/6.2000-4929.
[46] J. M. Gablonsky. (2001). Modifications of the direct algorithm. . DOI: 10.2514/6.2000-4929.
[47] A. Hedar. (2005). test functions for unconstrained global optimization. . DOI: 10.2514/6.2000-4929.
[48] S. S. Rao. (2009). Engineering Optimization Theory and Practice. DOI: 10.2514/6.2000-4929.
[49] H. W. Kuhn, A. W. Tucker. Nonlinear programming. :481-492. DOI: 10.2514/6.2000-4929.
[50] D. Lim, Y. S. Ong, B. Sendhoff, B. S. Lee. et al.(2007). Inverse multi-objective robust evolutionary design optimization. Genetic Programming and Evolvable Machines.7(4):383-404. DOI: 10.2514/6.2000-4929.
[51] J. Marczyk. Stochastic multidisciplinary improvement: beyond optimization. :2000-4929. DOI: 10.2514/6.2000-4929.
[52] D. E. Finkel, C. T. Kelley. (2006). Additive scaling and the direct algorithm. Journal of Global Optimization.36(4):597-608. DOI: 10.2514/6.2000-4929.
[53] A. Hendriks, K. C. Wiese, E. Glen, A. Deschenes. et al.A distributed genetic algorithm for rna secondary structure prediction. . DOI: 10.2514/6.2000-4929.
[54] G. Liuzzi, S. Lucidi, V. Piccialli. (2010). A direct-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Computational Optimization and Applications.45(2):353-375. DOI: 10.2514/6.2000-4929.
文献评价指标
浏览 260次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次