首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-04-03
Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family
Structural Biology and Molecular Biophysics
Stefan Brückner 1 Rajib Schubert 2 Timo Kraushaar 3 Raimo Hartmann 4 Daniel Hoffmann 1 Eric Jelli 4 Knut Drescher 4 Daniel J Müller 2 Lars Oliver Essen 3 , 5 Hans-Ulrich Mösch 1 , 5
Show affiliations
Received 2020-01-31, accepted for publication 2020-04-03, Published 2020-04-03

Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.


S. cerevisiae;Flo11 flocculin;biofilm;yeast;cell adhesion;kin discrimination


© 2020, Brückner et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Stefan Brückner,Rajib Schubert,Timo Kraushaar,Raimo Hartmann,Daniel Hoffmann,Eric Jelli,Knut Drescher,Daniel J Müller,Lars Oliver Essen,Hans-Ulrich Mösch. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. eLife ,Vol.9(2020)



[1] LA Marraffini, EJ Sontheimer. (2010). Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature.463:568-571. DOI: 10.1107/S0907444902016657.
[2] B Regenberg, KE Hanghøj, KS Andersen, JJ Boomsma. et al.(2016). Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular. Proceedings of the Royal Society B: Biological Sciences.283. DOI: 10.1107/S0907444902016657.
[3] M Krieg, Y Arboleda-Estudillo, PH Puech, J Käfer. et al.(2008). Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biology.10:429-436. DOI: 10.1107/S0907444902016657.
[4] TB Reynolds, GR Fink. (2001). Bakers' Yeast, a Model for Fungal Biofilm Formation. Science.291:878-881. DOI: 10.1107/S0907444902016657.
[5] H McWilliam, W Li, M Uludag, S Squizzato. et al.(2013). Analysis tool web services from the EMBL-EBI. Nucleic Acids Research.41:W597-W600. DOI: 10.1107/S0907444902016657.
[6] KA Wilkins, NS Poulter, VE Franklin-Tong. (2014). Taking one for the team: self-recognition and cell suicide in pollen. Journal of Experimental Botany.65:1331-1342. DOI: 10.1107/S0907444902016657.
[7] . (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography.50:760-763. DOI: 10.1107/S0907444902016657.
[8] S Barua, L Li, PN Lipke, AM Dranginis. et al.(2016). Molecular basis for strain variation in the Adhesin Flo11p. mSphere.1. DOI: 10.1107/S0907444902016657.
[9] O Grundmann, HU Mösch, GH Braus. (2001). Repression of mRNA translation by nitrogen starvation in. The Journal of Biological Chemistry.276:25661-25671. DOI: 10.1107/S0907444902016657.
[10] Y Rikitake, K Mandai, Y Takai. (2012). The role of nectins in different types of cell-cell adhesion. Journal of Cell Science.125:3713-3722. DOI: 10.1107/S0907444902016657.
[11] G Celniker, G Nimrod, H Ashkenazy, F Glaser. et al.(2013). ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Israel Journal of Chemistry.53:199-206. DOI: 10.1107/S0907444902016657.
[12] J Chow, HM Dionne, A Prabhakar, A Mehrotra. et al.(2019). Aggregate filamentous growth responses in yeast. mSphere.4. DOI: 10.1107/S0907444902016657.
[13] A Löytynoja, N Goldman. (2010). webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics.11. DOI: 10.1107/S0907444902016657.
[14] JA Maier, C Martinez, K Kasavajhala, L Wickstrom. et al.(2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation.11:3696-3713. DOI: 10.1107/S0907444902016657.
[15] C Guthrie, GR Fink. (1991). Guide to Yeast Genetics and Molecular Biology. DOI: 10.1107/S0907444902016657.
[16] NA Baker, D Sept, S Joseph, MJ Holst. et al.(2001). Electrostatics of nanosystems: application to microtubules and the ribosome. PNAS.98:10037-10041. DOI: 10.1107/S0907444902016657.
[17] IS Gul, P Hulpiau, Y Saeys, F van Roy. et al.(2017). Evolution and diversity of cadherins and catenins. Experimental Cell Research.358:3-9. DOI: 10.1107/S0907444902016657.
[18] D Alsteens, R Newton, R Schubert, D Martinez-Martin. et al.(2017). Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotechnology.12:177-183. DOI: 10.1107/S0907444902016657.
[19] KY Le, M Otto. (2015). Quorum-sensing regulation in staphylococci-an overview. Frontiers in Microbiology.6. DOI: 10.1107/S0907444902016657.
[20] O Hallatschek, P Hersen, S Ramanathan, DR Nelson. et al.(2007). Genetic drift at expanding frontiers promotes gene segregation. PNAS.104:19926-19930. DOI: 10.1107/S0907444902016657.
[21] WG Land. (2015). How evolution tells us to induce allotolerance. Experimental and Clinical Transplantation.13 Suppl 1:46-54. DOI: 10.1107/S0907444902016657.
[22] R Rubinstein, CA Thu, KM Goodman, HN Wolcott. et al.(2015). Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions. Cell.163:629-642. DOI: 10.1107/S0907444902016657.
[23] J Morfill, K Blank, C Zahnd, B Luginbühl. et al.(2007). Affinity-matured recombinant antibody fragments analyzed by single-molecule force spectroscopy. Biophysical Journal.93:3583-3590. DOI: 10.1107/S0907444902016657.
[24] PJ Millard, BL Roth, HP Thi, ST Yue. et al.(1997). Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Applied and Environmental Microbiology.63:2897-2905. DOI: 10.1107/S0907444902016657.
[25] G Liti, DM Carter, AM Moses, J Warringer. et al.(2009). Population genomics of domestic and wild yeasts. Nature.458:337-341. DOI: 10.1107/S0907444902016657.
[26] RL Roberts, GR Fink. (1994). Elements of a single MAP kinase cascade in mediate two developmental programs in the same cell type: mating and invasive growth. Genes & Development.8:2974-2985. DOI: 10.1107/S0907444902016657.
[27] WL Delano. (2002). The PyMOL Molecular Graphics System. DOI: 10.1107/S0907444902016657.
[28] A Sali, TL Blundell. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology.234:779-815. DOI: 10.1107/S0907444902016657.
[29] PW de Groot, O Bader, AD de Boer, M Weig. et al.(2013). Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryotic Cell.12:470-481. DOI: 10.1107/S0907444902016657.
[30] BW Lee, R Schubert, YK Cheung, F Zannier. et al.(2010). Strongly binding cell-adhesive polypeptides of programmable valencies. Angewandte Chemie International Edition.49:1971-1975. DOI: 10.1107/S0907444902016657.
[31] R Dawkins. (1976). The Selfish Gene. DOI: 10.1107/S0907444902016657.
[32] PD Adams, RW Grosse-Kunstleve, LW Hung, TR Ioerger. et al.(2002). : building new software for automated crystallographic structure determination. Acta Crystallographica Section D Biological Crystallography.58:1948-1954. DOI: 10.1107/S0907444902016657.
[33] PJ Cullen, GF Sprague. (2000). Glucose depletion causes haploid invasive growth in yeast. PNAS.97:13619-13624. DOI: 10.1107/S0907444902016657.
[34] RE Michod. (2007). Evolution of individuality during the transition from unicellular to multicellular life. PNAS.104 Suppl 1:8613-8618. DOI: 10.1107/S0907444902016657.
[35] S Hirose, R Benabentos, HI Ho, A Kuspa. et al.(2011). Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science.333:467-470. DOI: 10.1107/S0907444902016657.
[36] WD Hamilton. (1964). The genetical evolution of social behaviour. I. Journal of Theoretical Biology.7:1-16. DOI: 10.1107/S0907444902016657.
[37] M Heinig, D Frishman. (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research.32:W500-W502. DOI: 10.1107/S0907444902016657.
[38] WS Lo, AM Dranginis. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by. Molecular Biology of the Cell.9:161-171. DOI: 10.1107/S0907444902016657.
[39] D Eisenberg, E Schwarz, M Komaromy, R Wall. et al.(1984). Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of Molecular Biology.179:125-142. DOI: 10.1107/S0907444902016657.
[40] J Schluter, CD Nadell, BL Bassler, KR Foster. et al.(2015). Adhesion as a weapon in microbial competition. The ISME Journal.9:139-149. DOI: 10.1107/S0907444902016657.
[41] CD Nadell, K Drescher, KR Foster. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology.14:589-600. DOI: 10.1107/S0907444902016657.
[42] GN Murshudov, P Skubák, AA Lebedev, NS Pannu. et al.(2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography.67:355-367. DOI: 10.1107/S0907444902016657.
[43] RD Dowell, O Ryan, A Jansen, D Cheung. et al.(2010). Genotype to phenotype: a complex problem. Science.328. DOI: 10.1107/S0907444902016657.
[44] ZJ Oppler, ME Parrish, HA Murphy. (2019). Variation at an adhesin locus suggests sociality in natural populations of the yeast. Proceedings of the Royal Society B: Biological Sciences.286. DOI: 10.1107/S0907444902016657.
[45] S Hirose, B Santhanam, M Katoh-Kurosawa, G Shaulsky. et al.(2015). Allorecognition, via TgrB1 and TgrC1, mediates the transition from unicellularity to multicellularity in the social Amoeba. Development.142:3561-3570. DOI: 10.1107/S0907444902016657.
[46] AM Dranginis, JM Rauceo, JE Coronado, PN Lipke. et al.(2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiology and Molecular Biology Reviews.71:282-294. DOI: 10.1107/S0907444902016657.
[47] P Cao, D Wall. (2017). Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. PNAS.114:3732-3737. DOI: 10.1107/S0907444902016657.
[48] S Brückner, HU Mösch. (2012). Choosing the right lifestyle: adhesion and development in. FEMS Microbiology Reviews.36:25-58. DOI: 10.1107/S0907444902016657.
[49] JK Holopainen, JD Blande. (2012). Molecular plant volatile communication. Advances in Experimental Medicine and Biology.739:17-31. DOI: 10.1107/S0907444902016657.
[50] PJ Boynton, D Greig. (2014). The ecology and evolution of non-domesticated Saccharomyces species. Yeast.31:449-462. DOI: 10.1107/S0907444902016657.
[51] H Jiang, L Chess. (2009). How the immune system achieves self-nonself discrimination during adaptive immunity. Advances in Immunology.102:95-133. DOI: 10.1107/S0907444902016657.
[52] S Smukalla, M Caldara, N Pochet, A Beauvais. et al.(2008). is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell.135:726-737. DOI: 10.1107/S0907444902016657.
[53] R Schubert, S Trenholm, K Balint, G Kosche. et al.(2018). Virus stamping for targeted single-cell infection in vitro and in vivo. Nature Biotechnology.36:81-88. DOI: 10.1107/S0907444902016657.
[54] R Schubert, N Strohmeyer, M Bharadwaj, SP Ramanathan. et al.(2014). Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy. FEBS Letters.588:3639-3648. DOI: 10.1107/S0907444902016657.
[55] DC Queller, E Ponte, S Bozzaro, JE Strassmann. et al.(2003). Single-gene greenbeard effects in the social Amoeba. Science.299:105-106. DOI: 10.1107/S0907444902016657.
[56] JE Strassmann, DC Queller. (2011). Evolution of cooperation and control of cheating in a social microbe. PNAS.108 Suppl 2:10855-10862. DOI: 10.1107/S0907444902016657.
[57] DT Pathak, X Wei, A Dey, D Wall. et al.(2013). Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in Bacteria. PLOS Genetics.9. DOI: 10.1107/S0907444902016657.
[58] N Otsu. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics.9:62-66. DOI: 10.1107/S0907444902016657.
[59] P Emsley, B Lohkamp, WG Scott, K Cowtan. et al.(2010). Features and development of. Acta Crystallographica. Section D, Biological Crystallography.66:486-501. DOI: 10.1107/S0907444902016657.
[60] JP Green, AM Holmes, AJ Davidson, S Paterson. et al.(2015). The genetic basis of kin recognition in a cooperatively breeding mammal. Current Biology.25:2631-2641. DOI: 10.1107/S0907444902016657.
[61] M Benoit, D Gabriel, G Gerisch, HE Gaub. et al.(2000). Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology.2:313-317. DOI: 10.1107/S0907444902016657.
[62] CB Ramsook, C Tan, MC Garcia, R Fung. et al.(2010). Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryotic Cell.9:393-404. DOI: 10.1107/S0907444902016657.
[63] W Kabsch. (2010). XDS. Acta Crystallographica. Section D, Biological Crystallography.66:125-132. DOI: 10.1107/S0907444902016657.
[64] R Karban, K Shiojiri. (2009). Self-recognition affects plant communication and defense. Ecology Letters.12:502-506. DOI: 10.1107/S0907444902016657.
[65] KV Goossens, RG Willaert. (2012). The N-terminal domain of the Flo11 protein from is an adhesin without mannose-binding activity. FEMS Yeast Research.12:78-87. DOI: 10.1107/S0907444902016657.
[66] JT Bonner. (2004). Perspective: the size-complexity rule. Evolution.58:1883-1890. DOI: 10.1107/S0907444902016657.
[67] J Beckmann, R Schubert, R Chiquet-Ehrismann, DJ Müller. et al.(2013). Deciphering teneurin domains that facilitate cellular recognition, cell-cell adhesion, and neurite outgrowth using atomic force microscopy-based single-cell force spectroscopy. Nano Letters.13:2937-2946. DOI: 10.1107/S0907444902016657.
[68] M Kragl, R Schubert, H Karsjens, S Otter. et al.(2016). The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nature Communications.7. DOI: 10.1107/S0907444902016657.
[69] T Kraushaar, S Brückner, M Veelders, D Rhinow. et al.(2015). Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands. Structure.23:1005-1017. DOI: 10.1107/S0907444902016657.
[70] JC Bayly, LM Douglas, IS Pretorius, FF Bauer. et al.(2005). Characteristics of Flo11-dependent flocculation in. FEMS Yeast Research.5:1151-1156. DOI: 10.1107/S0907444902016657.
[71] D Wall. (2016). Kin Recognition in Bacteria. Annual Review of Microbiology.70:143-160. DOI: 10.1107/S0907444902016657.
[72] M Veelders, S Brückner, D Ott, C Unverzagt. et al.(2010). Structural basis of flocculin-mediated social behavior in yeast. PNAS.107:22511-22516. DOI: 10.1107/S0907444902016657.
浏览 30次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次