首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-04-06
Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons
Developmental Biology
Amira Hassan 1 Pablo Araguas Rodriguez 1 Stefan K Heidmann 2 Emma L Walmsley 1 Gabriel N Aughey 1 Tony D Southall 1
Show affiliations
Received 2020-01-14, accepted for publication 2020-04-06, Published 2020-04-06

Condensin complexes are essential for mitotic chromosome assembly and segregation during cell divisions, however, little is known about their functions in post-mitotic cells. Here we report a role for the condensin I subunit Cap-G in Drosophila neurons. We show that, despite not requiring condensin for mitotic chromosome compaction, post-mitotic neurons express Cap-G. Knockdown of Cap-G specifically in neurons (from their birth onwards) results in developmental arrest, behavioural defects, and dramatic gene expression changes, including reduced expression of a subset of neuronal genes and aberrant expression of genes that are not normally expressed in the developing brain. Knockdown of Cap-G in mature neurons results in similar phenotypes but to a lesser degree. Furthermore, we see dynamic binding of Cap-G at distinct loci in progenitor cells and differentiated neurons. Therefore, Cap-G is essential for proper gene expression in neurons and plays an important role during the early stages of neuronal development.


D. melanogaster;DamID;post-mitotic;development;neuron;condensin


© 2020, Hassan et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Amira Hassan,Pablo Araguas Rodriguez,Stefan K Heidmann,Emma L Walmsley,Gabriel N Aughey,Tony D Southall. Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons. eLife ,Vol.9(2020)



[1] K Harding, K White. (2018). as a model for developmental biology: stem Cell-Fate decisions in the developing nervous system. Journal of Developmental Biology.6. DOI: 10.1101/437459.
[2] M Ganji, IA Shaltiel, S Bisht, E Kim. et al.(2018). Real-time imaging of DNA loop extrusion by condensin. Science.360:102-105. DOI: 10.1101/437459.
[3] R Giet, DM Glover. (2001). aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. Journal of Cell Biology.152:669-682. DOI: 10.1101/437459.
[4] DP Leader, SA Krause, A Pandit, SA Davies. et al.(2018). FlyAtlas 2: a new version of the expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Research.46:D809-D815. DOI: 10.1101/437459.
[5] JT Heale, AR Ball, JA Schmiesing, JS Kim. et al.(2006). Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Molecular Cell.21:837-848. DOI: 10.1101/437459.
[6] TD Southall. (2019). . DOI: 10.1101/437459.
[7] AC Lau, G Csankovszki. (2014). Condensin-mediated chromosome organization and gene regulation. Frontiers in Genetics.5. DOI: 10.1101/437459.
[8] DG Gibson, HO Smith, CA Hutchison, JC Venter. et al.(2010). Chemical synthesis of the mouse mitochondrial genome. Nature Methods.7:901-903. DOI: 10.1101/437459.
[9] N Aono, T Sutani, T Tomonaga, S Mochida. et al.(2002). Cnd2 has dual roles in mitotic condensation and interphase. Nature.417:197-202. DOI: 10.1101/437459.
[10] T Terakawa, S Bisht, JM Eeftens, C Dekker. et al.(2017). The condensin complex is a mechanochemical motor that translocates along DNA. Science.358:672-676. DOI: 10.1101/437459.
[11] SG Swygert, S Kim, X Wu, T Fu. et al.(2019). Condensin-Dependent chromatin compaction represses transcription globally during quiescence. Molecular Cell.73:533-546. DOI: 10.1101/437459.
[12] NA Lanson, A Maltare, H King, R Smith. et al.(2011). A model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Human Molecular Genetics.20:2510-2523. DOI: 10.1101/437459.
[13] JW Gargano, I Martin, P Bhandari, MS Grotewiel. et al.(2005). Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in. Experimental Gerontology.40:386-395. DOI: 10.1101/437459.
[14] A Hassan. (2020). GitHub. DOI: 10.1101/437459.
[15] J-C Olivo-Marin. (2002). Extraction of spots in biological images using multiscale products. Pattern Recognition.35:1989-1996. DOI: 10.1101/437459.
[16] GN Aughey, A Estacio Gomez, J Thomson, H Yin. et al.(2018). CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. eLife.7. DOI: 10.1101/437459.
[17] RA Oliveira, S Heidmann, CE Sunkel. (2007). Condensin I binds chromatin early in Prophase and displays a highly dynamic association with mitotic chromosomes. Chromosoma.116:259-274. DOI: 10.1101/437459.
[18] S Berg, D Kutra, T Kroeger, CN Straehle. et al.(2019). Ilastik: interactive machine learning for (bio)image analysis. Nature Methods.16:1226-1232. DOI: 10.1101/437459.
[19] MR Paul, TE Markowitz, A Hochwagen, S Ercan. et al.(2018). Condensin depletion causes genome decompaction without altering the level of global gene expression in. Genetics.210:331-344. DOI: 10.1101/437459.
[20] GN Aughey, SW Cheetham, TD Southall. (2019). DamID as a versatile tool for understanding gene regulation. Development.146. DOI: 10.1101/437459.
[21] RA Oliveira, PA Coelho, CE Sunkel. (2005). The condensin I subunit barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Molecular and Cellular Biology.25:8971-8984. DOI: 10.1101/437459.
[22] L Yang, J Titlow, D Ennis, C Smith. et al.(2017). Single molecule fluorescence in situ hybridisation for quantitating post-transcriptional regulation in brains. Methods.126:166-176. DOI: 10.1101/437459.
[23] S Heinz, C Benner, N Spann, E Bertolino. et al.(2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular Cell.38:576-589. DOI: 10.1101/437459.
[24] KJ Dej, C Ahn, TL Orr-Weaver. (2004). Mutations in the condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics.168:895-906. DOI: 10.1101/437459.
[25] S Herzog, S Nagarkar Jaiswal, E Urban, A Riemer. et al.(2013). Functional dissection of the condensin subunit Cap-G reveals its exclusive association with condensin I. PLOS Genetics.9. DOI: 10.1101/437459.
[26] GJ Filion, JG van Bemmel, U Braunschweig, W Talhout. et al.(2010). Systematic protein location mapping reveals five principal chromatin types in cells. Cell.143:212-224. DOI: 10.1101/437459.
[27] Y Liao, GK Smyth, W Shi. (2019). The R package rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research.47. DOI: 10.1101/437459.
[28] K Van Bortle, MH Nichols, L Li, CT Ong. et al.(2014). Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biology.15. DOI: 10.1101/437459.
[29] Y Xu, CG Leung, DC Lee, BK Kennedy. et al.(2006). MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia.20:1261-1269. DOI: 10.1101/437459.
[30] T Hirano. (2016). Condensin-Based chromosome organization from Bacteria to vertebrates. Cell.164:847-857. DOI: 10.1101/437459.
[31] A Dobin, CA Davis, F Schlesinger, J Drenkow. et al.(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics.29:15-21. DOI: 10.1101/437459.
[32] C Berger, S Renner, K Lüer, GM Technau. et al.(2007). The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in the embryonic CNS. Developmental Dynamics.236:3562-3568. DOI: 10.1101/437459.
[33] W Li, Y Hu, S Oh, Q Ma. et al.(2015b). Condensin I and II complexes license full estrogen receptor α-Dependent enhancer activation. Molecular Cell.59:188-202. DOI: 10.1101/437459.
[34] CD Nichols, J Becnel, UB Pandey. (2012). Methods to assay behavior. JoVE.61. DOI: 10.1101/437459.
[35] C Berger, H Harzer, TR Burkard, J Steinmann. et al.(2012). FACS purification and transcriptome analysis of neural stem cells reveals a role for klumpfuss in self-renewal. Cell Reports.2:407-418. DOI: 10.1101/437459.
[36] L Li, X Lyu, C Hou, N Takenaka. et al.(2015a). Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular Cell.58:216-231. DOI: 10.1101/437459.
[37] K Nishide, T Hirano. (2014). Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLOS Genetics.10. DOI: 10.1101/437459.
[38] J Bischof, RK Maeda, M Hediger, F Karch. et al.(2007). An optimized transgenesis system for using germ-line-specific phiC31 integrases. PNAS.104:3312-3317. DOI: 10.1101/437459.
[39] . (2016). . DOI: 10.1101/437459.
[40] BJ Meyer. (2010). Targeting X chromosomes for repression. Current Opinion in Genetics & Development.20:179-189. DOI: 10.1101/437459.
[41] C Hocquet, X Robellet, L Modolo, XM Sun. et al.(2018). Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. eLife.7. DOI: 10.1101/437459.
[42] KC Yuen, JL Gerton. (2018). Taking cohesin and condensin in context. PLOS Genetics.14. DOI: 10.1101/437459.
[43] KC Yuen, BD Slaughter, JL Gerton. (2017). Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Science Advances.3. DOI: 10.1101/437459.
[44] S Seipold, FC Priller, P Goldsmith, WA Harris. et al.(2009). Non-SMC condensin I complex proteins control chromosome segregation and survival of proliferating cells in the zebrafish neural retina. BMC Developmental Biology.9. DOI: 10.1101/437459.
[45] AT Schuster, K Sarvepalli, EA Murphy, MS Longworth. et al.(2013). Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in somatic cells. PLOS Genetics.9. DOI: 10.1101/437459.
[46] G Yu, LG Wang, Y Han, QY He. et al.(2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology.16:284-287. DOI: 10.1101/437459.
[47] H Jäger, M Rauch, S Heidmann. (2005). The condensin subunit Cap-G interacts with the centromere-specific histone H3 variant CID. Chromosoma.113:350-361. DOI: 10.1101/437459.
[48] OJ Marshall, TD Southall, SW Cheetham, AH Brand. et al.(2016). Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nature Protocols.11:1586-1598. DOI: 10.1101/437459.
[49] JH Kim, T Zhang, NC Wong, N Davidson. et al.(2013). Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nature Communications.4. DOI: 10.1101/437459.
[50] J Schindelin, I Arganda-Carreras, E Frise, V Kaynig. et al.(2012). Fiji: an open-source platform for biological-image analysis. Nature Methods.9:676-682. DOI: 10.1101/437459.
[51] MI Love, W Huber, S Anders. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology.15. DOI: 10.1101/437459.
[52] E Savvidou, N Cobbe, S Steffensen, S Cotterill. et al.(2005). CAP-D2 is required for condensin complex stability and resolution of sister chromatids. Journal of Cell Science.118:2529-2543. DOI: 10.1101/437459.
[53] S Cajal. (1890). Sobre la aparición de las expansiones celulares en la médula embrionaria. Gaceta Sanitaria De Barcelona.12:413-419. DOI: 10.1101/437459.
[54] OJ Marshall, AH Brand. (2015). damidseq_pipeline: an automated pipeline for processing DamID sequencing datasets. Bioinformatics.31:3371-3373. DOI: 10.1101/437459.
[55] E Caussinus, O Kanca, M Affolter. (2012). Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature Structural & Molecular Biology.19:117-121. DOI: 10.1101/437459.
[56] K Blighe. (2019). R Package Version. DOI: 10.1101/437459.
[57] J Rivera. (2018). REDfly: the transcriptional regulatory element database for. Nucleic Acids Research.41:D828-D834. DOI: 10.1101/437459.
[58] MS Longworth, JA Walker, E Anderssen, NS Moon. et al.(2012). A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity. PLOS Genetics.8. DOI: 10.1101/437459.
[59] JS Rawlings, M Gatzka, PG Thomas, JN Ihle. et al.(2011). Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. The EMBO Journal.30:263-276. DOI: 10.1101/437459.
[60] F Ramírez, DP Ryan, B Grüning, V Bhardwaj. et al.(2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research.44:W160-W165. DOI: 10.1101/437459.
[61] K Kleinschnitz. (2020). Condensin I is required for faithful meiosis in males. Chromosoma. DOI: 10.1101/437459.
[62] AL Kranz, CY Jiao, LH Winterkorn, SE Albritton. et al.(2013). Genome-wide analysis of condensin binding in. Genome Biology.14. DOI: 10.1101/437459.
[63] TD Southall. (2017). . DOI: 10.1101/437459.
[64] M Kschonsak, F Merkel, S Bisht, J Metz. et al.(2017). Structural basis for a Safety-Belt mechanism that anchors condensin to chromosomes. Cell.171:588-600. DOI: 10.1101/437459.
[65] P McDonel, J Jans, BK Peterson, BJ Meyer. et al.(2006). Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature.444:614-618. DOI: 10.1101/437459.
[66] CM Lake, J Korda Holsclaw, SP Bellendir, J Sekelsky. et al.(2013). The Development of a Monoclonal Antibody Recognizing the Phosphorylated Histone H2A Variant (γ-H2AV). G3: Genes|Genomes|Genetics.3:1539-1543. DOI: 10.1101/437459.
[67] TD Southall, CM Davidson, C Miller, A Carr. et al.(2014). Dedifferentiation of neurons precedes tumor formation in lola mutants. Developmental Cell.28:685-696. DOI: 10.1101/437459.
[68] F de Chaumont, S Dallongeville, N Chenouard, N Hervé. et al.(2012). Icy: an open bioimage informatics platform for extended reproducible research. Nature Methods.9:690-696. DOI: 10.1101/437459.
[69] W McKinney. (2010). Data structures for statistical computing in Python . . DOI: 10.1101/437459.
[70] TD Southall, KS Gold, B Egger, CM Davidson. et al.(2013). Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA pol II occupancy in neural stem cells. Developmental Cell.26:101-112. DOI: 10.1101/437459.
[71] C D'Ambrosio, CK Schmidt, Y Katou, G Kelly. et al.(2008). Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes & Development.22:2215-2227. DOI: 10.1101/437459.
[72] AR Quinlan, IM Hall. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics.26:841-842. DOI: 10.1101/437459.
[73] N Cobbe, E Savvidou, MM Heck. (2006). Diverse mitotic and interphase functions of condensins in. Genetics.172:991-1008. DOI: 10.1101/437459.
[74] R Albertson, C Chabu, A Sheehan, CQ Doe. et al.(2004). Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. Journal of Cell Science.117:6061-6070. DOI: 10.1101/437459.
[75] A Pauli, F Althoff, RA Oliveira, S Heidmann. et al.(2008). Cell-type-specific TEV protease cleavage reveals cohesin functions in neurons. Developmental Cell.14:239-251. DOI: 10.1101/437459.
[76] ES Chen, T Sutani, M Yanagida. (2004). Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. PNAS.101:8078-8083. DOI: 10.1101/437459.
[77] N Abdennur. (2018). Condensin II inactivation in interphase does not affect chromatin folding or gene expression. bioRxiv. DOI: 10.1101/437459.
[78] OJ Marshall, AH Brand. (2017). Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nature Communications.8. DOI: 10.1101/437459.
[79] E Zacharioudaki, J Falo Sanjuan, S Bray. (2019). Mi-2/NuRD complex protects stem cell progeny from mitogenic notch signaling. eLife.8. DOI: 10.1101/437459.
[80] MR Paul, A Hochwagen, S Ercan. (2019). Condensin action and compaction. Current Genetics.65:407-415. DOI: 10.1101/437459.