
eLife | Volume 9 ,2020-04-11 |
A neuropeptide regulates fighting behavior in Drosophila melanogaster | |
Neuroscience | |
Fengming Wu 1 , 2 Bowen Deng 3 , 4 Na Xiao 5 Tao Wang 1 , 6 Yining Li 3 , 7 Rencong Wang 1 , 2 Kai Shi 1 , 2 Dong-Gen Luo 4 , 5 Yi Rao 3 , 4 , 7 Chuan Zhou 1 , 2 , 4 | |
![]() |
|
DOI:10.7554/eLife.54229 | |
Received 2019-12-06, accepted for publication 2020-04-11, Published 2020-04-11 | |
![]() |
摘要
Aggressive behavior is regulated by various neuromodulators such as neuropeptides and biogenic amines. Here we found that the neuropeptide Drosulfakinin (Dsk) modulates aggression in Drosophila melanogaster. Knock-out of Dsk or Dsk receptor CCKLR-17D1 reduced aggression. Activation and inactivation of Dsk-expressing neurons increased and decreased male aggressive behavior, respectively. Moreover, data from transsynaptic tracing, electrophysiology and behavioral epistasis reveal that Dsk-expressing neurons function downstream of a subset of P1 neurons (P1a-splitGAL4) to control fighting behavior. In addition, winners show increased calcium activity in Dsk-expressing neurons. Conditional overexpression of Dsk promotes social dominance, suggesting a positive correlation between Dsk signaling and winning effects. The mammalian ortholog CCK has been implicated in mammal aggression, thus our work suggests a conserved neuromodulatory system for the modulation of aggressive behavior.
关键词
D. melanogaster;social hierarchy;neural circuit;neuropeptide
授权许可
通讯作者
推荐引用方式
Fengming Wu,Bowen Deng,Na Xiao,Tao Wang,Yining Li,Rencong Wang,Kai Shi,Dong-Gen Luo,Yi Rao,Chuan Zhou. A neuropeptide regulates fighting behavior in Drosophila melanogaster. eLife ,Vol.9(2020)
您觉得这篇文章对您有帮助吗?
分享和收藏
参考文献
[1] | Q Li, X Deng, P Singh. (2007). Significant increase in the aggressive behavior of transgenic mice overexpressing peripheral progastrin peptides: associated changes in CCK2 and serotonin receptors in the CNS. Neuropsychopharmacology.32:1813-1821. DOI: 10.1073/pnas.1303446110. |
[2] | MD Gordon, K Scott. (2009). Motor control in a taste circuit. Neuron.61:373-384. DOI: 10.1073/pnas.1303446110. |
[3] | XJ Gao, O Riabinina, J Li, CJ Potter. et al.(2015). A transcriptional reporter of intracellular ca(2+) in. Nature Neuroscience.18:917-925. DOI: 10.1073/pnas.1303446110. |
[4] | E Vrontou, SP Nilsen, E Demir, EA Kravitz. et al.(2006). Fruitless regulates aggression and dominance in. Nature Neuroscience.9:1469-1471. DOI: 10.1073/pnas.1303446110. |
[5] | M Versteven, L Vanden Broeck, B Geurten, L Zwarts. et al.(2017). Hearing regulates aggression. PNAS.114:1958-1963. DOI: 10.1073/pnas.1303446110. |
[6] | RN Arey, JF Enwright, SM Spencer, E Falcon. et al.(2014). An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Molecular Psychiatry.19:342-350. DOI: 10.1073/pnas.1303446110. |
[7] | I Tõru, A Aluoja, Ülle Võhma, M Raag. et al.(2010). Associations between personality traits and CCK-4-induced panic attacks in healthy volunteers. Psychiatry Research.178:342-347. DOI: 10.1073/pnas.1303446110. |
[8] | OV Alekseyenko, YB Chan, MP Fernandez, T Bülow. et al.(2014). Single serotonergic neurons that modulate aggression in. Current Biology.24:2700-2707. DOI: 10.1073/pnas.1303446110. |
[9] | Y Pan, GW Meissner, BS Baker. (2012). Joint control of male courtship behavior by motion cues and activation of male-specific P1 neurons. PNAS.109:10065-10070. DOI: 10.1073/pnas.1303446110. |
[10] | T Rohlfing, CR Maurer. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine.7:16-25. DOI: 10.1073/pnas.1303446110. |
[11] | OV Alekseyenko, Y-B Chan, R Li, EA Kravitz. et al.(2013). Single dopaminergic neurons that modulate aggression in. PNAS.110:6151-6156. DOI: 10.1073/pnas.1303446110. |
[12] | FN Hamada, M Rosenzweig, K Kang, SR Pulver. et al.(2008). An internal thermal sensor controlling temperature preference in. Nature.454:217-220. DOI: 10.1073/pnas.1303446110. |
[13] | EA Kravitz, R Huber. (2003). Aggression in invertebrates. Current Opinion in Neurobiology.13:736-743. DOI: 10.1073/pnas.1303446110. |
[14] | C Sears, J Wilson, A Fitches. (2013). Investigating the role of BDNF and CCK system genes in suicidality in a familial bipolar cohort. Journal of Affective Disorders.151:611-617. DOI: 10.1073/pnas.1303446110. |
[15] | TM Kubiak, MJ Larsen, KJ Burton, CA Bannow. et al.(2002). Cloning and functional expression of the sulfakinin receptor DSK-R1. Biochemical and Biophysical Research Communications.291:313-320. DOI: 10.1073/pnas.1303446110. |
[16] | AA Hoffmann. (1987). Territorial encounters between males of different sizes. Animal Behaviour.35:1899-1901. DOI: 10.1073/pnas.1303446110. |
[17] | AA Hoffmann. (1990). The influence of age and experience with conspecifics on territorial behavior. Journal of Insect Behavior.3:1-12. DOI: 10.1073/pnas.1303446110. |
[18] | L Wang, DJ Anderson. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in. Nature.463:227-231. DOI: 10.1073/pnas.1303446110. |
[19] | AJ Brake, MJ Wagenbach, D Julius. (1994). New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature.371:519-523. DOI: 10.1073/pnas.1303446110. |
[20] | K Watanabe, H Chiu, BD Pfeiffer, AM Wong. et al.(2017). A circuit node that integrates convergent input from neuromodulatory and social Behavior-Promoting neurons to control aggression in. Neuron.95:1112-1128. DOI: 10.1073/pnas.1303446110. |
[21] | L Wang, X Han, J Mehren, M Hiroi. et al.(2011). Hierarchical chemosensory regulation of male-male social interactions in. Nature Neuroscience.14:757-762. DOI: 10.1073/pnas.1303446110. |
[22] | C Becker, MH Thièbot, Y Touitou, M Hamon. et al.(2001). Enhanced cortical extracellular levels of cholecystokinin-like material in a model of anticipation of social defeat in the rat. The Journal of Neuroscience.21:262-269. DOI: 10.1073/pnas.1303446110. |
[23] | SJ Certel, MG Savella, DC Schlegel, EA Kravitz. et al.(2007). Modulation of male behavioral choice. PNAS.104:4706-4711. DOI: 10.1073/pnas.1303446110. |
[24] | K Asahina. (2017). Neuromodulation and strategic action choice in Aggression. Annual Review of Neuroscience.40:51-75. DOI: 10.1073/pnas.1303446110. |
[25] | S Chen, AY Lee, NM Bowens, R Huber. et al.(2002). Fighting fruit flies: a model system for the study of aggression. PNAS.99:5664-5668. DOI: 10.1073/pnas.1303446110. |
[26] | K Asahina, K Watanabe, BJ Duistermars, E Hoopfer. et al.(2014). Tachykinin-expressing neurons control male-specific aggressive arousal in. Cell.156:221-235. DOI: 10.1073/pnas.1303446110. |
[27] | C Darwin. (1859). On the Origin of Species by Means of Natural Selection. DOI: 10.1073/pnas.1303446110. |
[28] | KZ Lorenz. (1963). On aggression. DOI: 10.1073/pnas.1303446110. |
[29] | AA Hoffmann, Z Cacoyianni. (1989). Selection for territoriality in : correlated responses in mating success and other fitness components. Animal Behaviour.38:23-34. DOI: 10.1073/pnas.1303446110. |
[30] | AA Hoffmann, Z Cacoyianni. (1990). Territoriality in as a conditional strategy. Animal Behaviour.40:526-537. DOI: 10.1073/pnas.1303446110. |
[31] | W Liu, X Liang, J Gong, Z Yang. et al.(2011). Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in. Nature Neuroscience.14:896-902. DOI: 10.1073/pnas.1303446110. |
[32] | B Luo, JW Cheu, A Siegel. (1998). Cholecystokinin B receptors in the periaqueductal gray potentiate defensive rage behavior elicited from the medial hypothalamus of the cat. Brain Research.796:27-37. DOI: 10.1073/pnas.1303446110. |
[33] | SC Hoyer, A Eckart, A Herrel, T Zars. et al.(2008). Octopamine in male aggression of . Curr Biol.18:159-167. DOI: 10.1073/pnas.1303446110. |
[34] | A Yurkovic, O Wang, AC Basu, EA Kravitz. et al.(2006). Learning and memory associated with aggression in. PNAS.103:17519-17524. DOI: 10.1073/pnas.1303446110. |
[35] | ED Hoopfer, Y Jung, HK Inagaki, GM Rubin. et al.(2015). P1 interneurons promote a persistent internal state that enhances inter-male aggression in. eLife.4. DOI: 10.1073/pnas.1303446110. |
[36] | X Zhang, J Qi, N Tang, S Wang. et al.(2018). Intraperitoneal injection of nesfatin-1 primarily through the CCK-CCK1R signal pathway affects expression of appetite factors to inhibit the food intake of siberian sturgeon (Acipenser baerii). Peptides.109:14-22. DOI: 10.1073/pnas.1303446110. |
[37] | CJ Shen, D Zheng, KX Li, JM Yang. et al.(2019). Cannabinoid CB receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nature Medicine.25:337-349. DOI: 10.1073/pnas.1303446110. |
[38] | W Sf, C Guo, H Zhao, MS Sun. et al.(2019). Drosulfakinin/CCKLR signaling in 1 fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in. Nature Communications.10. DOI: 10.1073/pnas.1303446110. |
[39] | A Siegel, KL Schubert, MB Shaikh. (1997). Neurotransmitters regulating defensive rage behavior in the cat. Neuroscience & Biobehavioral Reviews.21:733-742. DOI: 10.1073/pnas.1303446110. |
[40] | HA Dierick, RJ Greenspan. (2007). Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nature Genetics.39:678-682. DOI: 10.1073/pnas.1303446110. |
[41] | DR Nässel, MJ Williams. (2014). Cholecystokinin-Like peptide (DSK) in , not only for satiety signaling. Frontiers in Endocrinology.5. DOI: 10.1073/pnas.1303446110. |
[42] | S Diegelmann, A Jansen, S Jois, K Kastenholz. et al.(2017). The CApillary FEeder assay measures food intake in . Journal of Visualized Experiments : JoVE.121. DOI: 10.1073/pnas.1303446110. |
[43] | B Deng, Q Li, X Liu, Y Cao. et al.(2019). Chemoconnectomics: mapping chemical transmission in. Neuron.101:876-893. DOI: 10.1073/pnas.1303446110. |
[44] | C Becker, B Zeau, C Rivat, A Blugeot. et al.(2008). Repeated social defeat-induced depression-like behavioral and biological alterations in rats: involvement of cholecystokinin. Molecular Psychiatry.13:1079-1092. DOI: 10.1073/pnas.1303446110. |
[45] | H Watkins, CE Seidman, JG Seidman, HS Feng. et al.(1996). Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. evidence for a dominant negative action. Journal of Clinical Investigation.98:2456-2461. DOI: 10.1073/pnas.1303446110. |
[46] | M Beye, P Neumann, M Chapuisat, P Pamilo. et al.(1998). Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behavioral Ecology and Sociobiology.43:67-72. DOI: 10.1073/pnas.1303446110. |
[47] | R Nichols, SA Schneuwly, JE Dixon. (1988). Identification and characterization of a homologue to the vertebrate neuropeptide cholecystokinin. The Journal of Biological Chemistry.263:12167-12170. DOI: 10.1073/pnas.1303446110. |
[48] | SP Nilsen, YB Chan, R Huber, EA Kravitz. et al.(2004). Gender-selective patterns of aggressive behavior in. PNAS.101:12342-12347. DOI: 10.1073/pnas.1303446110. |
[49] | MJ Williams, P Goergen, J Rajendran, G Zheleznyakova. et al.(2014). Obesity-linked homologues TfAP-2 and twz establish meal frequency in. PLOS Genetics.10. DOI: 10.1073/pnas.1303446110. |
[50] | J Bradwejn, D Koszycki, G Meterissian. (1990). Tetrapeptide induces panic attack stetrapeptide induces panic attacks in patients with panic disorder . The Canadian Journal of Psychiatry.35:83-85. DOI: 10.1073/pnas.1303446110. |
[51] | A Nern, BD Pfeiffer, GM Rubin. (2015). Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. PNAS.112:E2967-E2976. DOI: 10.1073/pnas.1303446110. |
[52] | GS Jefferis, CJ Potter, AM Chan, EC Marin. et al.(2007). Comprehensive maps of higher olfactory centers: spatially segregated fruit and pheromone representation. Cell.128:1187-1203. DOI: 10.1073/pnas.1303446110. |
[53] | A Keller, ST Sweeney, T Zars, CJ O'Kane. et al.(2002). Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in. Journal of Neurobiology.50:221-233. DOI: 10.1073/pnas.1303446110. |
[54] | YK Kim, M Saver, J Simon, CF Kent. et al.(2018). Repetitive aggressive encounters generate a long-lasting internal state in males. PNAS.115:1099-1104. DOI: 10.1073/pnas.1303446110. |
[55] | Y Jung, A Kennedy, H Chiu, F Mohammad. et al.(2020). Neurons that function within an integrator to promote a persistent behavioral state in . Neuron.333. DOI: 10.1073/pnas.1303446110. |
[56] | ST Sweeney, K Broadie, J Keane, H Niemann. et al.(1995). Targeted expression of tetanus toxin light chain in specifically eliminates synaptic transmission and causes behavioral defects. Neuron.14:341-351. DOI: 10.1073/pnas.1303446110. |
[57] | MLL Donnelly, LE Hughes, G Luke, H Mendoza. et al.(2001). The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. Journal of General Virology.82:1027-1041. DOI: 10.1073/pnas.1303446110. |
[58] | M Talay, EB Richman, NJ Snell, GG Hartmann. et al.(2017). Transsynaptic mapping of Second-Order taste neurons in flies by trans-Tango. Neuron.96:783-795. DOI: 10.1073/pnas.1303446110. |
[59] | AS Thum, S Knapek, J Rister, E Dierichs-Schmitt. et al.(2006). Differential potencies of effector genes in adult. The Journal of Comparative Neurology.498:194-203. DOI: 10.1073/pnas.1303446110. |
[60] | EH Feinberg, MK Vanhoven, A Bendesky, G Wang. et al.(2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron.57:353-363. DOI: 10.1073/pnas.1303446110. |
[61] | BJ Duistermars, BD Pfeiffer, ED Hoopfer, DJ Anderson. et al.(2018). A brain module for scalable control of complex, Multi-motor threat displays. Neuron.100:1474-1490. DOI: 10.1073/pnas.1303446110. |
[62] | AH Sturtevant. (1915). Experiments on sex recognition and the problem of sexual selection in . Anim Behav.5:351-366. DOI: 10.1073/pnas.1303446110. |
[63] | C Zhou, Y Rao, Y Rao. (2008). A subset of octopaminergic neurons are important for aggression. Nature Neuroscience.11:1059-1067. DOI: 10.1073/pnas.1303446110. |
[64] | C Zhou, R Franconville, AG Vaughan, CC Robinett. et al.(2015). Central neural circuitry mediating courtship song perception in male. eLife.4. DOI: 10.1073/pnas.1303446110. |
[65] | M Koganezawa, K Kimura, D Yamamoto. (2016). The neural circuitry that functions as a switch for courtship versus aggression in males. Current Biology.26:1395-1403. DOI: 10.1073/pnas.1303446110. |

浏览 | 957次 |
下载全文 | 276次 |
评分次数 | 236次 |
用户评分
![]() ![]() ![]() ![]() ![]() |
0.0分 |
分享 | 0次 |

- 1.The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression
- 2.Problematic gambling behaviour in adolescents: prevalence and its relation to social, self-regulatory, and academic self-efficacy
- 3.Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons
- 4.The ESCRT machinery regulates retromer-dependent transcytosis of septate junction components in Drosophila
- 5.Metabolic control of cellular immune-competency by odors in Drosophila
- 6.Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization
- 7.Constitutive activation of cellular immunity underlies the evolution of resistance to infection in Drosophila
- 8.Change and HOAP for the best
- 9.The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling
- 10.Muscle signals to the rescue
- 11.Topographic gradients of intrinsic dynamics across neocortex
- 12.A genome engineering resource to uncover principles of cellular organization and tissue architecture by lipid signaling