首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-04-03
A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord
Genetics and Genomics
Aaron M Allen 1 Megan C Neville 1 Sebastian Birtles 1 Vincent Croset 1 Christoph Daniel Treiber 1 Scott Waddell 1 Stephen F Goodwin 1
Show affiliations
Received 2019-11-30, accepted for publication 2020-04-03, Published 2020-04-03

The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.


D. melanogaster;ventral nerve cord;nervous system;single-cell transcriptomics


© 2020, Allen et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Aaron M Allen,Megan C Neville,Sebastian Birtles,Vincent Croset,Christoph Daniel Treiber,Scott Waddell,Stephen F Goodwin. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife ,Vol.9(2020)



[1] CS Mendes, SV Rajendren, I Bartos, S Márka. et al.(2014). Kinematic responses to changes in walking orientation and gravitational load in. PLOS ONE.9. DOI: 10.1371/journal.pgen.1003849.
[2] CS Mendes, I Bartos, T Akay, S Márka. et al.(2013). Quantification of gait parameters in freely walking wild type and sensory deprived. eLife.2. DOI: 10.1371/journal.pgen.1003849.
[3] RS Hewes, D Park, SA Gauthier, AM Schaefer. et al.(2003). The bHLH protein dimmed controls neuroendocrine cell differentiation in. Development.130:1771-1781. DOI: 10.1371/journal.pgen.1003849.
[4] M Monastirioti, CE Linn, K White. (1996). Characterization of tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. The Neurosci.16:3900-3911. DOI: 10.1371/journal.pgen.1003849.
[5] V Hartenstein, L Cruz, JK Lovick, M Guo. et al.(2017). Developmental analysis of the dopamine-containing neurons of the brain. The Journal of Comparative Neurology.525:363-379. DOI: 10.1371/journal.pgen.1003849.
[6] A Prokop, GM Technau. (1991). The origin of postembryonic neuroblasts in the ventral nerve cord of. Development.111:79-88. DOI: 10.1371/journal.pgen.1003849.
[7] D Pauls, C Blechschmidt, F Frantzmann, B El Jundi. et al.(2018). A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of. Scientific Reports.8. DOI: 10.1371/journal.pgen.1003849.
[8] M Crow, J Gillis. (2019). Single cell RNA-sequencing: replicability of cell types. Current Opinion in Neurobiology.56:69-77. DOI: 10.1371/journal.pgen.1003849.
[9] V Hartenstein. (2018). The Oxford Handbook of Invertebrate Neurobiology. DOI: 10.1371/journal.pgen.1003849.
[10] HJ Pavlou, AC Lin, MC Neville, T Nojima. et al.(2016). Neural circuitry coordinating male copulation. eLife.5. DOI: 10.1371/journal.pgen.1003849.
[11] MA Crickmore, LB Vosshall. (2013). Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in. Cell.155:881-893. DOI: 10.1371/journal.pgen.1003849.
[12] C Rezával, T Nojima, MC Neville, AC Lin. et al.(2014). Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in. Current Biology.24:725-730. DOI: 10.1371/journal.pgen.1003849.
[13] V Croset, CD Treiber, S Waddell. (2018). Cellular diversity in the midbrain revealed by single-cell transcriptomics. eLife.7. DOI: 10.1371/journal.pgen.1003849.
[14] EJ Rideout, AJ Dornan, MC Neville, S Eadie. et al.(2010). Control of sexual differentiation and behavior by the gene in. Nature Neuroscience.13:458-466. DOI: 10.1371/journal.pgen.1003849.
[15] P Philippidou, JS Dasen. (2013). Hox genes: choreographers in neural development, architects of circuit organization. Neuron.80:12-34. DOI: 10.1371/journal.pgen.1003849.
[16] GC Pipes, Q Lin, SE Riley, CS Goodman. et al.(2001). The beat generation: a multigene family encoding IgSF proteins related to the beat axon guidance molecule in. Development.128:4545-4552. DOI: 10.1371/journal.pgen.1003849.
[17] P Cognigni, J Felsenberg, S Waddell. (2018). Do the right thing: neural network mechanisms of memory formation, expression and update in. Current Opinion in Neurobiology.49:51-58. DOI: 10.1371/journal.pgen.1003849.
[18] DR Nässel, U Pirvola, P Panula. (1990). Histaminelike immunoreactive neurons innervating putative neurohaemal Areas and central neuropil in the thoraco-abdominal ganglia of the flies and. Journal of Comparative Neurology.297:525-536. DOI: 10.1371/journal.pgen.1003849.
[19] JD Clyne, G Miesenböck. (2008). Sex-specific control and tuning of the pattern generator for courtship song in. Cell.133:354-363. DOI: 10.1371/journal.pgen.1003849.
[20] SH Cole, GE Carney, CA McClung, SS Willard. et al.(2005). Two functional but noncomplementing tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. The Journal of Biological Chemistry.280:14948-14955. DOI: 10.1371/journal.pgen.1003849.
[21] DR Nässel, MH Holmqvist, RC Hardie, R Håkanson. et al.(1988). Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies and. Cell and Tissue Research.253:639-646. DOI: 10.1371/journal.pgen.1003849.
[22] S Namiki, MH Dickinson, AM Wong, W Korff. et al.(2018). The functional organization of descending sensory-motor pathways in. eLife.7. DOI: 10.1371/journal.pgen.1003849.
[23] daW Huang, BT Sherman, RA Lempicki. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols.4:44-57. DOI: 10.1371/journal.pgen.1003849.
[24] MG Anderson, GL Perkins, P Chittick, RJ Shrigley. et al.(1995). , a POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline Glia. Genes & Development.9:123-137. DOI: 10.1371/journal.pgen.1003849.
[25] CE Howard, CL Chen, T Tabachnik, R Hormigo. et al.(2019). Serotonergic modulation of walking in Drosophila. Current Biology.29:4218-4230. DOI: 10.1371/journal.pgen.1003849.
[26] AM Allen. (2020). . DOI: 10.1371/journal.pgen.1003849.
[27] T Agrawal, S Sadaf, G Hasan. (2013). A genetic RNAi screen for IP₃/Ca²⁺ coupled GPCRs in identifies the PdfR as a regulator of insect flight. PLOS Genet.9. DOI: 10.1371/journal.pgen.1003849.
[28] O Hobert, P Kratsios. (2019). Neuronal identity control by terminal selectors in worms, flies, and chordates. Current Opinion in Neurobiology.56:97-105. DOI: 10.1371/journal.pgen.1003849.
[29] J Ro, G Pak, PA Malec, Y Lyu. et al.(2016). Serotonin signaling mediates protein valuation and aging. eLife.5. DOI: 10.1371/journal.pgen.1003849.
[30] B Honegger, M Galic, K Köhler, F Wittwer. et al.(2008). Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in and is essential for starvation resistance. Journal of Biology.7. DOI: 10.1371/journal.pgen.1003849.
[31] D Park, JA Veenstra, JH Park, PH Taghert. et al.(2008). Mapping peptidergic cells in : where DIMM fits in. PLOS ONE.3. DOI: 10.1371/journal.pgen.1003849.
[32] R Satija, JA Farrell, D Gennert, AF Schier. et al.(2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology.33:495-502. DOI: 10.1371/journal.pgen.1003849.
[33] S Robinow, AR Campos, KM Yao, K White. et al.(1988). The elav gene product of , required in neurons, has three RNP consensus motifs. Science.242:1570-1572. DOI: 10.1371/journal.pgen.1003849.
[34] RC Court, J Armstrong, J Börner, G Card. et al.(2017). A systematic nomenclature for the ventral nervous system. bioRxiv. DOI: 10.1371/journal.pgen.1003849.
[35] Y Pan, CC Robinett, BS Baker. (2011). Turning males on: activation of male courtship behavior in. PLOS ONE.6. DOI: 10.1371/journal.pgen.1003849.
[36] D Pauls, J Chen, W Reiher, JT Vanselow. et al.(2014). Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EuPA Open Proteomics.3:114-127. DOI: 10.1371/journal.pgen.1003849.
[37] JT Littleton, B Ganetzky. (2000). Ion channels and synaptic organization: analysis of the genome. Neuron.26:35-43. DOI: 10.1371/journal.pgen.1003849.
[38] E Özkan, RA Carrillo, CL Eastman, R Weiszmann. et al.(2013). An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell.154:228-239. DOI: 10.1371/journal.pgen.1003849.
[39] EZ Macosko, A Basu, R Satija, J Nemesh. et al.(2015). Highly parallel Genome-wide expression profiling of individual cells using nanoliter droplets. Cell.161:1202-1214. DOI: 10.1371/journal.pgen.1003849.
[40] M Baek, J Enriquez, RS Mann. (2013). Dual role for hox genes and hox co-factors in conferring leg motoneuron survival and identity in. Development.140:2027-2038. DOI: 10.1371/journal.pgen.1003849.
[41] H Kim, C Kirkhart, K Scott. (2017). Long-range projection neurons in the taste circuit of. eLife.6. DOI: 10.1371/journal.pgen.1003849.
[42] A Mamiya, P Gurung, JC Tuthill. (2018). Neural coding of leg proprioception in. Neuron.100:636-650. DOI: 10.1371/journal.pgen.1003849.
[43] JW Truman, H Schuppe, D Shepherd, DW Williams. et al.(2004). Developmental architecture of adult-specific lineages in the ventral CNS of. Development.131:5167-5184. DOI: 10.1371/journal.pgen.1003849.
[44] S Jois, YB Chan, MP Fernandez, AK Leung. et al.(2018). Characterization of the sexually dimorphic Neurons That Regulate Copulation Duration. Frontiers in Physiology.9. DOI: 10.1371/journal.pgen.1003849.
[45] JW Truman, W Moats, J Altman, EC Marin. et al.(2010). Role of notch signaling in establishing the hemilineages of secondary neurons in. Development.137:53-61. DOI: 10.1371/journal.pgen.1003849.
[46] M Baek, RS Mann. (2009). Lineage and birth date specify motor neuron targeting and dendritic architecture in adult. Journal of Neuroscience.29:6904-6916. DOI: 10.1371/journal.pgen.1003849.
[47] S Barolo, LA Carver, JW Posakony. (2000). GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in. BioTechniques.29728:726-732. DOI: 10.1371/journal.pgen.1003849.
[48] MK DeSalvo, SJ Hindle, ZM Rusan, S Orng. et al.(2014). The surface Glia transcriptome: evolutionary conserved blood-brain barrier processes. Frontiers in Neuroscience.8. DOI: 10.1371/journal.pgen.1003849.
[49] JW Truman, M Bate. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of. Developmental Biology.125:145-157. DOI: 10.1371/journal.pgen.1003849.
[50] IE Schor, G Bussotti, M Maleš, M Forneris. et al.(2018). Non-coding RNA expression, function, and variation during Embryogenesis. Current Biology.28:3547-3561. DOI: 10.1371/journal.pgen.1003849.
[51] K Ito, K Shinomiya, M Ito, JD Armstrong. et al.(2014). A systematic nomenclature for the insect brain. Neuron.81:755-765. DOI: 10.1371/journal.pgen.1003849.
[52] S Kikuta, Y Hagiwara-Komoda, H Noda, T Kikawada. et al.(2012). A novel member of the trehalose transporter family functions as an h(+)-dependent trehalose transporter in the reabsorption of trehalose in malpighian tubules. Frontiers in Physiology.3. DOI: 10.1371/journal.pgen.1003849.
[53] B Kim, RD Shortridge, C Seong, Y Oh. et al.(1998). Molecular characterization of a novel gene which is expressed in the central nervous system. Molecules and Cells.8:750-757. DOI: 10.1371/journal.pgen.1003849.
[54] DR Angelini, TC Kaufman. (2005). Insect appendages and comparative ontogenetics. Developmental Biology.286:57-77. DOI: 10.1371/journal.pgen.1003849.
[55] A Schmid, A Chiba, CQ Doe. (1999). Clonal analysis of embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development.126:4653-4689. DOI: 10.1371/journal.pgen.1003849.
[56] Y Huang, FS Ng, FR Jackson. (2015). Comparison of larval and adult astrocytes reveals stage-specific gene expression profiles. G3: Genes, Genomes, Genetics.5:551-558. DOI: 10.1371/journal.pgen.1003849.
[57] BS Scruggs, DA Gilchrist, S Nechaev, GW Muse. et al.(2015). Bidirectional transcription arises from two distinct hubs of transcription factor binding and active chromatin. Molecular Cell.58:1101-1112. DOI: 10.1371/journal.pgen.1003849.
[58] G Overend, Y Luo, L Henderson, AE Douglas. et al.(2016). Molecular mechanism and functional significance of acid generation in the midgut. Scientific Reports.6. DOI: 10.1371/journal.pgen.1003849.
[59] K Davie, J Janssens, D Koldere, M De Waegeneer. et al.(2018). A Single-Cell transcriptome atlas of the aging brain. Cell.174:982-998. DOI: 10.1371/journal.pgen.1003849.
[60] FP Davis, A Nern, S Picard, MB Reiser. et al.(2020). A genetic, genomic, and computational resource for exploring neural circuit function. eLife.9. DOI: 10.1371/journal.pgen.1003849.
[61] N Schützler, C Girwert, I Hügli, G Mohana. et al.(2019). Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust locomotion to nutritional state. PNAS.116:3805-3810. DOI: 10.1371/journal.pgen.1003849.
[62] B Zhou, DW Williams, J Altman, LM Riddiford. et al.(2009). Temporal patterns of broad isoform expression during the development of neuronal lineages in. Neural Development.4. DOI: 10.1371/journal.pgen.1003849.
[63] P Kerner, A Ikmi, D Coen, M Vervoort. et al.(2009). Evolutionary history of the genes in metazoans. BMC Evolutionary Biology.9. DOI: 10.1371/journal.pgen.1003849.
[64] MP Nusbaum, DM Blitz, E Marder. (2017). Functional consequences of neuropeptide and small-molecule co-transmission. Nature Reviews Neuroscience.18:389-403. DOI: 10.1371/journal.pgen.1003849.
[65] ES Deneris, O Hobert. (2014). Maintenance of postmitotic neuronal cell identity. Nature Neuroscience.17:899-907. DOI: 10.1371/journal.pgen.1003849.
[66] CA Martin, DE Krantz. (2014). as a genetic model system to study neurotransmitter transporters. Neurochemistry International.73:71-88. DOI: 10.1371/journal.pgen.1003849.
[67] JN Noordermeer, CC Kopczynski, RD Fetter, KS Bland. et al.(1998). Wrapper, a novel member of the ig superfamily, is expressed by midline Glia and is required for them to ensheath commissural axons in. Neuron.21:991-1001. DOI: 10.1371/journal.pgen.1003849.
[68] W McGinnis, R Krumlauf. (1992). Homeobox genes and axial patterning. Cell.68:283-302. DOI: 10.1371/journal.pgen.1003849.
[69] C Maurange, L Cheng, AP Gould. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in. Cell.133:891-902. DOI: 10.1371/journal.pgen.1003849.
[70] SS Bidaye, C Machacek, Y Wu, BJ Dickson. et al.(2014). Neuronal control of walking direction. Science.344:97-101. DOI: 10.1371/journal.pgen.1003849.
[71] G McIlroy, I Foldi, J Aurikko, JS Wentzell. et al.(2013). Toll-6 and Toll-7 function as neurotrophin receptors in the CNS. Nature Neuroscience.16:1248-1256. DOI: 10.1371/journal.pgen.1003849.
[72] TD Tayler, DA Pacheco, AC Hergarden, M Murthy. et al.(2012). A neuropeptide circuit that coordinates sperm transfer and copulation duration in. PNAS.109:20697-20702. DOI: 10.1371/journal.pgen.1003849.
[73] A Suska, I Miguel-Aliaga, S Thor. (2011). Segment-specific generation of capability neuropeptide neurons by multi-faceted hox cues. Developmental Biology.353:72-80. DOI: 10.1371/journal.pgen.1003849.
[74] JC Billeter, A Villella, JB Allendorfer, AJ Dornan. et al.(2006). Isoform-specific control of male neuronal differentiation and behavior in by the gene. Current Biology.16:1063-1076. DOI: 10.1371/journal.pgen.1003849.
[75] S Thor, SG Andersson, A Tomlinson, JB Thomas. et al.(1999). A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature.397:76-80. DOI: 10.1371/journal.pgen.1003849.
[76] A Sellami, HJ Agricola, JA Veenstra. (2011). Neuroendocrine cells in producing GPA2/GPB5, a hormone with homology to LH, FSH and TSH. General and Comparative Endocrinology.170:582-588. DOI: 10.1371/journal.pgen.1003849.
[77] AM Seeds, P Ravbar, P Chung, S Hampel. et al.(2014). A suppression hierarchy among competing motor programs drives sequential grooming in. eLife.3. DOI: 10.1371/journal.pgen.1003849.
[78] T Jonsson, EA Kravitz, R Heinrich. (2011). Sound production during agonistic behavior of male. Fly.5:29-38. DOI: 10.1371/journal.pgen.1003849.
[79] JS Dason, J Romero-Pozuelo, L Marin, BG Iyengar. et al.(2009). Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth. Journal of Cell Science.122:4109-4121. DOI: 10.1371/journal.pgen.1003849.
[80] N Karaiskos, P Wahle, J Alles, A Boltengagen. et al.(2017). The embryo at single-cell transcriptome resolution. Science.358:194-199. DOI: 10.1371/journal.pgen.1003849.
[81] AS Bates, J Janssens, GS Jefferis, S Aerts. et al.(2019). Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics. Current Opinion in Neurobiology.56:125-134. DOI: 10.1371/journal.pgen.1003849.
[82] RM Joseph, JR Carlson. (2015). chemoreceptors: a molecular interface between the chemical world and the brain. Trends in Genetics.31:683-695. DOI: 10.1371/journal.pgen.1003849.
[83] JE Niven, CM Graham, M Burrows. (2008). Diversity and evolution of the insect ventral nerve cord. Annual Review of Entomology.53:253-271. DOI: 10.1371/journal.pgen.1003849.
[84] M Crozatier, D Valle, L Dubois, S Ibnsouda. et al.(1996). Collier, a novel regulator of head development, is expressed in a single mitotic domain. Current Biology.6:707-718. DOI: 10.1371/journal.pgen.1003849.
[85] DR Nässel, M Zandawala. (2019). Recent advances in Neuropeptide signaling in , from genes to physiology and behavior. Progress in Neurobiology.179. DOI: 10.1371/journal.pgen.1003849.
[86] D Shepherd, R Harris, DW Williams, JW Truman. et al.(2016). Postembryonic lineages of the ventral nervous system: neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres. Journal of Comparative Neurology.524:2677-2695. DOI: 10.1371/journal.pgen.1003849.
[87] DF Cully, PS Paress, KK Liu, JM Schaeffer. et al.(1996). Identification of a glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. Journal of Biological Chemistry.271:20187-20191. DOI: 10.1371/journal.pgen.1003849.
[88] DR Nässel. (2018). Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in. Frontiers in Cellular Neuroscience.12. DOI: 10.1371/journal.pgen.1003849.
[89] AC von Philipsborn, T Liu, JY Yu, C Masser. et al.(2011). Neuronal control of courtship song. Neuron.69:509-522. DOI: 10.1371/journal.pgen.1003849.
[90] PT Lee, J Zirin, O Kanca, WW Lin. et al.(2018). A gene-specific library for. eLife.7. DOI: 10.1371/journal.pgen.1003849.
[91] R Wilk, J Hu, D Blotsky, HM Krause. et al.(2016). Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes & Development.30:594-609. DOI: 10.1371/journal.pgen.1003849.
[92] A Volkenhoff, A Weiler, M Letzel, M Stehling. et al.(2015). Glial glycolysis is essential for neuronal survival in. Cell Metabolism.22:437-447. DOI: 10.1371/journal.pgen.1003849.
[93] KM Lee, I Daubnerová, RE Isaac, C Zhang. et al.(2015). A neuronal pathway that controls sperm ejection and storage in female. Current Biology.25:790-797. DOI: 10.1371/journal.pgen.1003849.
[94] DP Leader, SA Krause, A Pandit, SA Davies. et al.(2018). FlyAtlas 2: a new version of the expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Research.46:D809-D815. DOI: 10.1371/journal.pgen.1003849.
[95] A Estacio-Gómez, A Hassan, E Walmsley, L Lee. et al.(2019). Dynamic neurotransmitter specific transcription factor expression profiles during development. bioRxiv. DOI: 10.1371/journal.pgen.1003849.
[96] TR Bürglin, M Affolter. (2016). Homeodomain proteins: an update. Chromosoma.125:497-521. DOI: 10.1371/journal.pgen.1003849.
[97] G Lee, A Villella, BJ Taylor, JC Hall. et al.(2001). New reproductive anomalies in -mutant males: extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs. Journal of Neurobiology.47:121-149. DOI: 10.1371/journal.pgen.1003849.
[98] M Burrows. (1992). Local circuits for the control of leg movements in an insect. Trends in Neurosciences.15:226-232. DOI: 10.1371/journal.pgen.1003849.
[99] TR Shirangi, DL Stern, JW Truman. (2013). Motor control of courtship song. Cell Reports.5:678-686. DOI: 10.1371/journal.pgen.1003849.
[100] SBM Gowda, PD Paranjpe, OV Reddy, D Thiagarajan. et al.(2018). GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving. PNAS.115:E2115-E2124. DOI: 10.1371/journal.pgen.1003849.
[101] G Card, MH Dickinson. (2008). Visually mediated motor planning in the escape response of. Current Biology.18:1300-1307. DOI: 10.1371/journal.pgen.1003849.
[102] RA Carrillo, E Özkan, KP Menon, S Nagarkar-Jaiswal. et al.(2015). Control of synaptic connectivity by a network of IgSF Cell Surface Proteins. Cell.163:1770-1782. DOI: 10.1371/journal.pgen.1003849.
[103] J Etheredge. (2017). Transcriptional Profiling of Drosophila Larval Ventral Nervous System Hemilineages and Neuroscience. DOI: 10.1371/journal.pgen.1003849.
[104] D Shepherd, V Sahota, R Court, DW Williams. et al.(2019). Developmental organization of central neurons in the adult ventral nervous system. Journal of Comparative Neurology.527:2573-2598. DOI: 10.1371/journal.pgen.1003849.
[105] M-FM Shih, FP Davis, GL Henry, J Dubnau. et al.(2019). Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Mushroom Bodies. G3: Genes, Genomes, Genetics.9:81-94. DOI: 10.1371/journal.pgen.1003849.
[106] L van der Maaten. (2014). Accelerating t-SNE using Tree-Based algorithms. Journal of Machine Learning Research.15:3221-3245. DOI: 10.1371/journal.pgen.1003849.
[107] JC Tuthill, RI Wilson. (2016). Parallel Transformation of Tactile Signals in Central Circuits of. Cell.164:1046-1059. DOI: 10.1371/journal.pgen.1003849.
[108] S Limmer, A Weiler, A Volkenhoff, F Babatz. et al.(2014). The blood-brain barrier: development and function of a glial endothelium. Frontiers in Neuroscience.8. DOI: 10.1371/journal.pgen.1003849.
[109] H Li, F Horns, B Wu, Q Xie. et al.(2017). Classifying olfactory projection neuron subtypes by Single-Cell RNA sequencing. Cell.171:1206-1220. DOI: 10.1371/journal.pgen.1003849.
[110] A Tsubouchi, T Yano, TK Yokoyama, C Murtin. et al.(2017). Topological and modality-specific representation of somatosensory information in the fly brain. Science.358:615-623. DOI: 10.1371/journal.pgen.1003849.
[111] G Lee, JC Hall. (2001). Abnormalities of male-specific FRU protein and serotonin expression in the CNS of mutants in. The Journal of Neuroscience.21:513-526. DOI: 10.1371/journal.pgen.1003849.
[112] O Birkholz, C Rickert, J Nowak, IC Coban. et al.(2015). Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of. Biology Open.4:420-434. DOI: 10.1371/journal.pgen.1003849.
[113] J Enriquez, LQ Rio, R Blazeski, S Bellemin. et al.(2018). Differing strategies despite shared lineages of motor neurons and Glia to achieve robust development of an adult neuropil in. Neuron.97:538-554. DOI: 10.1371/journal.pgen.1003849.
[114] E Buchner, S Buchner, MG Burg, A Hofbauer. et al.(1993). Histamine is a major mechanosensory neurotransmitter candidate in. Cell and Tissue Research.273:119-125. DOI: 10.1371/journal.pgen.1003849.
[115] BA Stahl, E Peco, S Davla, K Murakami. et al.(2018). The taurine transporter Eaat2 functions in ensheathing Glia to modulate sleep and metabolic rate. Current Biology.28:3700-3708. DOI: 10.1371/journal.pgen.1003849.
[116] J Doherty, MA Logan, OE Taşdemir, MR Freeman. et al.(2009). Ensheathing Glia function as phagocytes in the adult brain. Journal of Neuroscience.29:4768-4781. DOI: 10.1371/journal.pgen.1003849.
[117] T Bossing, G Udolph, CQ Doe, GM Technau. et al.(1996). The embryonic central nervous system lineages of  I Neuroblast lineages derived from the ventral half of the neuroectoderm. Developmental Biology.179:41-64. DOI: 10.1371/journal.pgen.1003849.
[118] A DiAntonio, RW Burgess, AC Chin, DL Deitcher. et al.(1993). Identification and characterization of genes for synaptic vesicle proteins. The Journal of Neuroscience.13:4924-4935. DOI: 10.1371/journal.pgen.1003849.
[119] CR Smarandache-Wellmann. (2016). Arthropod neurons and nervous system. Current Biology.26:R960-R965. DOI: 10.1371/journal.pgen.1003849.
[120] F Sievers, DG Higgins. (2018). Clustal omega for making accurate alignments of many protein sequences. Protein Science.27:135-145. DOI: 10.1371/journal.pgen.1003849.
[121] SJ Smith, U Sümbül, LT Graybuck, F Collman. et al.(2019). Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. eLife.8. DOI: 10.1371/journal.pgen.1003849.
[122] L Venkatasubramanian, RS Mann. (2019). The development and assembly of the adult ventral nerve cord. Current Opinion in Neurobiology.56:135-143. DOI: 10.1371/journal.pgen.1003849.
[123] K Kimura, C Sato, M Koganezawa, D Yamamoto. et al.(2015). ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLOS ONE.10. DOI: 10.1371/journal.pgen.1003849.
[124] CP Yang, TJ Samuels, Y Huang, L Yang. et al.(2017). Imp and syp RNA-binding proteins govern decommissioning of neural stem cells. Development.144:3454-3464. DOI: 10.1371/journal.pgen.1003849.
[125] C Yellman, H Tao, B He, J Hirsh. et al.(1997). Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated. PNAS.94:4131-4136. DOI: 10.1371/journal.pgen.1003849.
[126] F Knauf, B Rogina, Z Jiang, PS Aronson. et al.(2002). Functional characterization and immunolocalization of the transporter encoded by the life-extending gene indy. PNAS.99:14315-14319. DOI: 10.1371/journal.pgen.1003849.
[127] N Konstantinides, K Kapuralin, C Fadil, L Barboza. et al.(2018). Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell.174:622-635. DOI: 10.1371/journal.pgen.1003849.
[128] L Zappia, A Oshlack. (2018). Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience.7. DOI: 10.1371/journal.pgen.1003849.
[129] VR Chintapalli, J Wang, P Herzyk, SA Davies. et al.(2013). Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia. BMC Genomics.14. DOI: 10.1371/journal.pgen.1003849.
[130] WC Xiong, H Okano, NH Patel, JA Blendy. et al.(1994). Repo encodes a glial-specific homeo domain protein required in the nervous system. Genes & Development.8:981-994. DOI: 10.1371/journal.pgen.1003849.
[131] CD Hanlon, DJ Andrew. (2015). Outside-in signaling--a brief review of GPCR signaling with a focus on the Drosophila GPCR family. Journal of Cell Science.128:3533-3542. DOI: 10.1371/journal.pgen.1003849.
[132] CL Chen, L Hermans, MC Viswanathan, D Fortun. et al.(2018). Imaging neural activity in the ventral nerve cord of behaving adult. Nature Communications.9. DOI: 10.1371/journal.pgen.1003849.
[133] RC Hardie. (1987). Is histamine a neurotransmitter in insect photoreceptors?. Journal of Comparative Physiology A.161:201-213. DOI: 10.1371/journal.pgen.1003849.
[134] PJ Clyne, SJ Certel, M de Bruyne, L Zaslavsky. et al.(1999). The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron.22:339-347. DOI: 10.1371/journal.pgen.1003849.
[135] RM Harris, BD Pfeiffer, GM Rubin, JW Truman. et al.(2015). Neuron hemilineages provide the functional ground plan for the ventral nervous system. eLife.4. DOI: 10.1371/journal.pgen.1003849.
[136] E Witt, S Benjamin, N Svetec, L Zhao. et al.(2019). Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational Bias in. eLife.8. DOI: 10.1371/journal.pgen.1003849.
[137] H Lacin, JW Truman. (2016). Lineage mapping identifies molecular and architectural similarities between the larval and adult central nervous system. eLife.5. DOI: 10.1371/journal.pgen.1003849.
[138] A Wosnitza, T Bockemühl, M Dübbert, H Scholz. et al.(2013). Inter-leg coordination in the control of walking speed in. Journal of Experimental Biology.216:480-491. DOI: 10.1371/journal.pgen.1003849.
[139] SB Laughlin, RR de Ruyter van Steveninck, JC Anderson. (1998). The metabolic cost of neural information. Nature Neuroscience.1:36-41. DOI: 10.1371/journal.pgen.1003849.
[140] YH Chang, RM Keegan, L Prazak, J Dubnau. et al.(2019). Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. PLOS Biology.17. DOI: 10.1371/journal.pgen.1003849.
[141] F Cavodeassi, J Modolell, JL Gómez-Skarmeta. (2001). The iroquois family of genes: from body building to neural patterning. Development.128:2847-2855. DOI: 10.1371/journal.pgen.1003849.
[142] MJ Williams, P Goergen, J Rajendran, A Klockars. et al.(2014). Regulation of aggression by obesity-linked genes and twz through octopamine signaling in. Genetics.196:349-362. DOI: 10.1371/journal.pgen.1003849.
[143] H Lacin, HM Chen, X Long, RH Singer. et al.(2019). Neurotransmitter identity is acquired in a lineage-restricted manner in the CNS. eLife.8. DOI: 10.1371/journal.pgen.1003849.
[144] CL Greer, A Grygoruk, DE Patton, B Ley. et al.(2005). A splice variant of the vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. Journal of Neurobiology.64:239-258. DOI: 10.1371/journal.pgen.1003849.
[145] Z Gu, L Gu, R Eils, M Schlesner. et al.(2014). Circlize implements and enhances circular visualization in R. Bioinformatics.30:2811-2812. DOI: 10.1371/journal.pgen.1003849.
[146] S Grillner. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron.52:751-766. DOI: 10.1371/journal.pgen.1003849.
[147] Y Hamanaka, D Park, P Yin, SP Annangudi. et al.(2010). Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM. Current Biology.20:9-18. DOI: 10.1371/journal.pgen.1003849.
[148] J Chen, MS Choi, A Mizoguchi, JA Veenstra. et al.(2015). Isoform-specific expression of the neuropeptide orcokinin in. Peptides.68:50-57. DOI: 10.1371/journal.pgen.1003849.
浏览 32次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次