首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-04-03
Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila
Genetics and Genomics
Margot Wohl 1 , 2 Kenichi Ishii 1 , 2 Kenta Asahina 1
Show affiliations
DOI:10.7554/eLife.52702
Received 2019-10-12, accepted for publication 2020-04-03, Published 2020-04-03
PDF
摘要

Inter-male aggressive behavior is a prominent sexually dimorphic behavior. Neural circuits that underlie aggressive behavior are therefore likely under the control of sex-determining genes. However, the neurogenetic mechanism that generates sex-specific aggressive behavior remains largely unknown. Here, we found that a neuronal class specified by one of the Drosophila sex determining genes, fruitless (fru), belongs to the neural circuit that generates male-type aggressive behavior. This neuronal class can promote aggressive behavior independent of another sex determining gene, doublesex (dsx), although dsx is involved in ensuring that aggressive behavior is performed only toward males. We also found that three fru isoforms with different DNA binding domains show a division of labor on male aggressive behaviors. A dominant role of fru in specifying sex-specific aggressive behavior may underscore a genetic mechanism that allows male-type aggressive behavior to evolve at least partially independently from courtship behavior, which is under different selective pressures.

关键词

D. melanogaster;fruitless;doublesex;courtship;aggression;social behavior;sexual dimorphism

授权许可

© 2020, Wohl et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Margot Wohl,Kenichi Ishii,Kenta Asahina. Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila. eLife ,Vol.9(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] JW Wang, AM Wong, J Flores, LB Vosshall. et al.(2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell.112:271-282. DOI: 10.1016/j.cell.2013.11.045.
[2] P Stockinger, D Kvitsiani, S Rotkopf, L Tirián. et al.(2005). Neural circuitry that governs male courtship behavior. Cell.121:795-807. DOI: 10.1016/j.cell.2013.11.045.
[3] HT Spieth. (1981). and : head shapes, behavior and evolution. Evolution.35:921-930. DOI: 10.1016/j.cell.2013.11.045.
[4] Y Wan, H Otsuna, HA Holman, B Bagley. et al.(2017). FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis. BMC Bioinformatics.18. DOI: 10.1016/j.cell.2013.11.045.
[5] AA Hoffmann. (1990). The influence of age and experience with conspecifics on territorial behavior. Journal of Insect Behavior.3:1-12. DOI: 10.1016/j.cell.2013.11.045.
[6] JM Smith, GR Price. (1973). The logic of animal conflict. Nature.246:15-18. DOI: 10.1016/j.cell.2013.11.045.
[7] G Cardillo. (2006). Dunn's Test. DOI: 10.1016/j.cell.2013.11.045.
[8] F Wang, K Wang, N Forknall, C Patrick. et al.(2020). Neural circuitry linking mating and egg laying in females. Nature.579:101-105. DOI: 10.1016/j.cell.2013.11.045.
[9] L Wang, H Dankert, P Perona, DJ Anderson. et al.(2008). A common genetic target for environmental and heritable influences on aggressiveness in. PNAS.105:5657-5663. DOI: 10.1016/j.cell.2013.11.045.
[10] P Chamero, TF Marton, DW Logan, K Flanagan. et al.(2007). Identification of protein pheromones that promote aggressive behaviour. Nature.450:899-902. DOI: 10.1016/j.cell.2013.11.045.
[11] M Koganezawa, K Kimura, D Yamamoto. (2016). The neural circuitry that functions as a switch for courtship versus aggression in Males. Current Biology.26:1395-1403. DOI: 10.1016/j.cell.2013.11.045.
[12] S Cachero, AD Ostrovsky, JY Yu, BJ Dickson. et al.(2010). Sexual dimorphism in the fly brain. Current Biology.20:1589-1601. DOI: 10.1016/j.cell.2013.11.045.
[13] H Lee, D-W Kim, R Remedios, TE Anthony. et al.(2014). Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature.509:627-632. DOI: 10.1016/j.cell.2013.11.045.
[14] K Hashikawa, Y Hashikawa, J Lischinsky, D Lin. et al.(2018). The neural mechanisms of sexually dimorphic aggressive behaviors. Trends in Genetics.34:755-776. DOI: 10.1016/j.cell.2013.11.045.
[15] K Hashikawa, Y Hashikawa, R Tremblay, J Zhang. et al.(2017). Esr1 cells in the ventromedial hypothalamus control female aggression. Nature Neuroscience.20:1580-1590. DOI: 10.1016/j.cell.2013.11.045.
[16] KY Kaneshiro, CRB Boake. (1987). Sexual selection and speciation: issues raised by hawaiian. Trends in Ecology & Evolution.2:207-212. DOI: 10.1016/j.cell.2013.11.045.
[17] T Hattori, T Osakada, A Matsumoto, N Matsuo. et al.(2016). Self-Exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Current Biology.26:1229-1234. DOI: 10.1016/j.cell.2013.11.045.
[18] L Wang, DJ Anderson. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in. Nature.463:227-231. DOI: 10.1016/j.cell.2013.11.045.
[19] JC Hall. (1994). The mating of a fly. Science.264:1702-1714. DOI: 10.1016/j.cell.2013.11.045.
[20] K Usui-Aoki, H Ito, K Ui-Tei, K Takahashi. et al.(2000). Formation of the male-specific muscle in female by ectopic expression. Nature Cell Biology.2:500-506. DOI: 10.1016/j.cell.2013.11.045.
[21] C Rezával, T Nojima, MC Neville, AC Lin. et al.(2014). Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in. Current Biology.24:725-730. DOI: 10.1016/j.cell.2013.11.045.
[22] A Ueda, Y Kidokoro. (2002). Aggressive behaviours of female are influenced by their social experience and food resources. Physiological Entomology.27:21-28. DOI: 10.1016/j.cell.2013.11.045.
[23] D Yamamoto, M Koganezawa. (2013). Genes and circuits of courtship behaviour in males. Nature Reviews Neuroscience.14:681-692. DOI: 10.1016/j.cell.2013.11.045.
[24] K Asahina, K Watanabe, BJ Duistermars, E Hoopfer. et al.(2014). Tachykinin-expressing neurons control male-specific aggressive arousal in. Cell.156:221-235. DOI: 10.1016/j.cell.2013.11.045.
[25] L Stowers, TE Holy, M Meister, C Dulac. et al.(2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science.295:1493-1500. DOI: 10.1016/j.cell.2013.11.045.
[26] K Watanabe, H Chiu, BD Pfeiffer, AM Wong. et al.(2017). A circuit node that integrates convergent input from neuromodulatory and social Behavior-Promoting neurons to control aggression in. Neuron.95:1112-1128. DOI: 10.1016/j.cell.2013.11.045.
[27] JC Billeter, A Villella, JB Allendorfer, AJ Dornan. et al.(2006). Isoform-specific control of male neuronal differentiation and behavior in by the gene. Current Biology.16:1063-1076. DOI: 10.1016/j.cell.2013.11.045.
[28] TM Williams, SB Carroll. (2009). Genetic and molecular insights into the development and evolution of sexual dimorphism. Nature Reviews Genetics.10:797-804. DOI: 10.1016/j.cell.2013.11.045.
[29] JA Bogovic, H Hideo Otsuna, L Heinrich, M Ito. et al.(2018). An unbiased template of the brain and ventral nerve cord. bioRxiv. DOI: 10.1016/j.cell.2013.11.045.
[30] CF Yang, MC Chiang, DC Gray, M Prabhakaran. et al.(2013). Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell.153:896-909. DOI: 10.1016/j.cell.2013.11.045.
[31] GS Jefferis, CJ Potter, AM Chan, EC Marin. et al.(2007). Comprehensive maps of higher olfactory centers: spatially segregated fruit and pheromone representation. Cell.128:1187-1203. DOI: 10.1016/j.cell.2013.11.045.
[32] Y Pan, BS Baker. (2014). Genetic identification and separation of innate and experience-dependent courtship behaviors in. Cell.156:236-248. DOI: 10.1016/j.cell.2013.11.045.
[33] MV Wu, DS Manoli, EJ Fraser, JK Coats. et al.(2009). Estrogen masculinizes neural pathways and Sex-Specific behaviors. Cell.139:61-72. DOI: 10.1016/j.cell.2013.11.045.
[34] SA Juntti, J Tollkuhn, MV Wu, EJ Fraser. et al.(2010). The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. Neuron.66:260-272. DOI: 10.1016/j.cell.2013.11.045.
[35] X Xu, JK Coats, CF Yang, A Wang. et al.(2012). Modular genetic control of sexually dimorphic behaviors. Cell.148:596-607. DOI: 10.1016/j.cell.2013.11.045.
[36] BR Kallman, H Kim, K Scott. (2015). Excitation and inhibition onto central courtship neurons biases mate choice. eLife.4. DOI: 10.1016/j.cell.2013.11.045.
[37] Y Wu, SS Bidaye, D Mahringer. (2019). female-specific brain neuron elicits persistent position- and direction-selective male-like social behaviors. bioRxiv. DOI: 10.1016/j.cell.2013.11.045.
[38] M Wohl. (2019). Analysis Package for Layered Roles of Fruitless Isoforms Inspecification and Function of Male Aggression-Promoting Neurons in Drosophila. DOI: 10.1016/j.cell.2013.11.045.
[39] DK Price, CRB Boake. (1995). Behavioral reproductive isolation , , and their F1 hybrids (Diptera: Drosophilidae). Journal of Insect Behavior.8:595-616. DOI: 10.1016/j.cell.2013.11.045.
[40] BJ Duistermars, BD Pfeiffer, ED Hoopfer, DJ Anderson. et al.(2018). A brain module for scalable control of complex, Multi-motor threat displays. Neuron.100:1474-1490. DOI: 10.1016/j.cell.2013.11.045.
[41] S Ogawa, AE Chester, SC Hewitt, VR Walker. et al.(2000). Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha beta ERKO). PNAS.97:14737-14741. DOI: 10.1016/j.cell.2013.11.045.
[42] L Pereira, F Aeschimann, C Wang, H Lawson. et al.(2019). Timing mechanism of sexually dimorphic nervous system differentiation. eLife.8. DOI: 10.1016/j.cell.2013.11.045.
[43] MP Fernández, YB Chan, JY Yew, JC Billeter. et al.(2010). Pheromonal and behavioral cues trigger male-to-female aggression in. PLOS Biology.8. DOI: 10.1016/j.cell.2013.11.045.
[44] M Wu, JE Robinson, WJ Joiner. (2014). SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission. Current Biology.24:621-629. DOI: 10.1016/j.cell.2013.11.045.
[45] DL Van Vactor, RL Cagan, H Krämer, SL Zipursky. et al.(1991). Induction in the developing compound eye of : multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell.67:1145-1155. DOI: 10.1016/j.cell.2013.11.045.
[46] ME Jacobs. (1960). Influence of light on mating of Melanogaster. Ecology.41:182-188. DOI: 10.1016/j.cell.2013.11.045.
[47] CB Palavicino-Maggio, Y-B Chan, C McKellar, EA Kravitz. et al.(2019). A small number of cholinergic neurons mediate hyperaggression in female. PNAS.116:17029-17038. DOI: 10.1016/j.cell.2013.11.045.
[48] C Rezával, S Pattnaik, HJ Pavlou, T Nojima. et al.(2016). Activation of latent courtship circuitry in the brain of Females Induces Male-like Behaviors. Current Biology.26:2508-2515. DOI: 10.1016/j.cell.2013.11.045.
[49] E Demir, BJ Dickson. (2005). Fruitless splicing specifies male courtship behavior in. Cell.121:785-794. DOI: 10.1016/j.cell.2013.11.045.
[50] MA Dow, F von Schilcher. (1975). Aggression and mating success in. Nature.254:511-512. DOI: 10.1016/j.cell.2013.11.045.
[51] A Rico-Guevara, KJ Hurme. (2018). Intrasexually selected weapons. Biological Reviews of the Cambridge Philosophical Society.20. DOI: 10.1016/j.cell.2013.11.045.
[52] T Davis, J Kurihara, E Yoshino, D Yamamoto. et al.(2000). Genomic organisation of the neural sex determination gene fruitless (fru) in the hawaiian species silvestris and the conservation of the fru BTB protein-protein-binding domain throughout evolution. Hereditas.132:67-78. DOI: 10.1016/j.cell.2013.11.045.
[53] A Villella, DA Gailey, B Berwald, S Ohshima. et al.(1997). Extended reproductive roles of the gene in revealed by behavioral analysis of new mutants. Genetics.147:1107-1130. DOI: 10.1016/j.cell.2013.11.045.
[54] SC Vernes. (2015). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports.4. DOI: 10.1016/j.cell.2013.11.045.
[55] C Zhou, Y Pan, CC Robinett, GW Meissner. et al.(2014). Central brain neurons expressing regulate female receptivity in. Neuron.83:149-163. DOI: 10.1016/j.cell.2013.11.045.
[56] AC von Philipsborn, T Liu, JY Yu, C Masser. et al.(2011). Neuronal control of courtship song. Neuron.69:509-522. DOI: 10.1016/j.cell.2013.11.045.
[57] C Zhou, R Franconville, AG Vaughan, CC Robinett. et al.(2015). Central neural circuitry mediating courtship song perception in male. eLife.4. DOI: 10.1016/j.cell.2013.11.045.
[58] JY Yu, MI Kanai, E Demir, GS Jefferis. et al.(2010). Cellular organization of the neural circuit that drives Courtship Behavior. Current Biology : CB.20:1602-1614. DOI: 10.1016/j.cell.2013.11.045.
[59] H Ito, K Sato, S Kondo, R Ueda. et al.(2016). Fruitless represses transcription to shape Male-Specific neural morphology and behavior in. Current Biology.26:1532-1542. DOI: 10.1016/j.cell.2013.11.045.
[60] K Ishii, M Wohl, A DeSouza, K Asahina. et al.(2020). Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife.9. DOI: 10.1016/j.cell.2013.11.045.
[61] SP Nilsen, Y-B Chan, R Huber, EA Kravitz. et al.(2004). Gender-selective patterns of aggressive behavior in. PNAS.101:12342-12347. DOI: 10.1016/j.cell.2013.11.045.
[62] MC Neville, T Nojima, E Ashley, DJ Parker. et al.(2014). Male-specific fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system. Current Biology.24:229-241. DOI: 10.1016/j.cell.2013.11.045.
[63] CC Robinett, AG Vaughan, JM Knapp, BS Baker. et al.(2010). Sex and the single cell. II. there is a time and place for sex. PLOS Biology.8. DOI: 10.1016/j.cell.2013.11.045.
[64] D Deutsch, DA Pacheco, LJ Encarnacion-Rivera, T Pereira. et al.(2020). The neural basis for a persistent internal state in females. bioRxiv. DOI: 10.1016/j.cell.2013.11.045.
[65] JE Dalton, JM Fear, S Knott, BS Baker. et al.(2013). Male-specific fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics.14. DOI: 10.1016/j.cell.2013.11.045.
[66] HK Inagaki, Y Jung, ED Hoopfer, AM Wong. et al.(2014). Optogenetic control of using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods.11:325-332. DOI: 10.1016/j.cell.2013.11.045.
[67] AA Robie, J Hirokawa, AW Edwards, LA Umayam. et al.(2017). Mapping the neural substrates of behavior. Cell.170:393-406. DOI: 10.1016/j.cell.2013.11.045.
[68] D Deutsch, J Clemens, SY Thiberge, G Guan. et al.(2019). Shared song detector neurons in Male and Female Brains Drive Sex-Specific Behaviors. Current Biology.29:3200-3215. DOI: 10.1016/j.cell.2013.11.045.
[69] DJ Mellert, J-M Knapp, DS Manoli, GW Meissner. et al.(2010). Midline crossing by gustatory receptor neuron axons is regulated by and the Roundabout receptors. Development.137:323-332. DOI: 10.1016/j.cell.2013.11.045.
[70] M Costa, JD Manton, AD Ostrovsky, S Prohaska. et al.(2016). NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron.91:293-311. DOI: 10.1016/j.cell.2013.11.045.
[71] GW Meissner, SD Luo, BG Dias, MJ Texada. et al.(2016). Sex-specific regulation of in neurons. PNAS.113:E1256-E1265. DOI: 10.1016/j.cell.2013.11.045.
[72] T Rohlfing, CR Maurer. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine.7:16-25. DOI: 10.1016/j.cell.2013.11.045.
[73] S Chen, AY Lee, NM Bowens, R Huber. et al.(2002). Fighting fruit flies: a model system for the study of aggression. PNAS.99:5664-5668. DOI: 10.1016/j.cell.2013.11.045.
[74] J Schindelin, I Arganda-Carreras, E Frise, V Kaynig. et al.(2012). Fiji: an open-source platform for biological-image analysis. Nature Methods.9:676-682. DOI: 10.1016/j.cell.2013.11.045.
[75] AC von Philipsborn, S Jörchel, L Tirian, E Demir. et al.(2014). Cellular and behavioral functions of isoforms in courtship. Current Biology.24:242-251. DOI: 10.1016/j.cell.2013.11.045.
[76] EJ Clowney, S Iguchi, JJ Bussell, E Scheer. et al.(2015). Multimodal chemosensory circuits controlling male courtship in. Neuron.87:1036-1049. DOI: 10.1016/j.cell.2013.11.045.
[77] E Vrontou, SP Nilsen, E Demir, EA Kravitz. et al.(2006). regulates aggression and dominance in. Nature Neuroscience.9:1469-1471. DOI: 10.1016/j.cell.2013.11.045.
[78] Y Wan, H Otsuna, CB Chien, C Hansen. et al.(2009). An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Transactions on Visualization and Computer Graphics.15:1489-1496. DOI: 10.1016/j.cell.2013.11.045.
[79] SC Hoyer, A Eckart, A Herrel, T Zars. et al.(2008). Octopamine in male aggression of. Current Biology.18:159-167. DOI: 10.1016/j.cell.2013.11.045.
[80] F Huntingford, A Turner. (1987). Animal Conflict. DOI: 10.1016/j.cell.2013.11.045.
[81] ED Hoopfer, Y Jung, HK Inagaki, GM Rubin. et al.(2015). P1 interneurons promote a persistent internal state that enhances inter-male aggression in. eLife.4. DOI: 10.1016/j.cell.2013.11.045.
[82] MM McCarthy. (2008). Estradiol and the developing brain. Physiological Reviews.88:91-134. DOI: 10.1016/j.cell.2013.11.045.
[83] TR Shirangi, HD Dufour, TM Williams, SB Carroll. et al.(2009). Rapid evolution of sex pheromone-producing enzyme expression in. PLOS Biology.7. DOI: 10.1016/j.cell.2013.11.045.
[84] YB Chan, EA Kravitz. (2007). Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in. PNAS.104:19577-19582. DOI: 10.1016/j.cell.2013.11.045.
[85] ME Majerus. (1986). The genetics and evolution of female choice. Trends in Ecology & Evolution.1:1-7. DOI: 10.1016/j.cell.2013.11.045.
[86] I Marín, BS Baker. (1998). The evolutionary dynamics of sex determination. Science.281:1990-1994. DOI: 10.1016/j.cell.2013.11.045.