首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-04-03
Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons
Genetics and Genomics
Kenichi Ishii 1 Margot Wohl 1 , 2 Andre DeSouza 1 , 2 Kenta Asahina 1 , 2
Show affiliations
DOI:10.7554/eLife.52701
Received 2019-10-12, accepted for publication 2020-04-03, Published 2020-04-03
PDF
摘要

For successful mating, a male animal must execute effective courtship behaviors toward a receptive target sex, which is female. Whether the courtship execution capability and upregulation of courtship toward females are specified through separable sex-determining genetic pathways remains uncharacterized. Here, we found that one of the two Drosophila sex-determining genes, doublesex (dsx), specifies a male-specific neuronal component that serves as an execution mechanism for courtship behavior, whereas fruitless (fru) is required for enhancement of courtship behavior toward females. The dsx-dependent courtship execution mechanism includes a specific subclass within a neuronal cluster that co-express dsx and fru. This cluster contains at least another subclass that is specified cooperatively by both dsx and fru. Although these neuronal populations can also promote aggressive behavior toward male flies, this capacity requires fru-dependent mechanisms. Our results uncover how sex-determining genes specify execution capability and female-specific enhancement of courtship behavior through separable yet cooperative neurogenetic mechanisms.

关键词

D. melanogaster;fruitless;doublesex;courtship behavior;aggression;social behavior;sexual dimorphism

授权许可

© 2020, Ishii et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Kenichi Ishii,Margot Wohl,Andre DeSouza,Kenta Asahina. Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife ,Vol.9(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] JA Bogovic, H Otsuna, L Heinrich, M Ito. et al.(2018). An unbiased template of the brain and ventral nerve cord. bioRxiv. DOI: 10.1038/nrn.2016.125.
[2] P Chen, W Hong. (2018). Neural circuit mechanisms of social behavior. Neuron.98:16-30. DOI: 10.1038/nrn.2016.125.
[3] A Kopp. (2012). Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics.28:175-184. DOI: 10.1038/nrn.2016.125.
[4] S Chen, AY Lee, NM Bowens, R Huber. et al.(2002). Fighting fruit flies: a model system for the study of aggression. PNAS.99:5664-5668. DOI: 10.1038/nrn.2016.125.
[5] JF Bergan, Y Ben-Shaul, C Dulac. (2014). Sex-specific processing of social cues in the medial amygdala. eLife.3. DOI: 10.1038/nrn.2016.125.
[6] S Cachero, AD Ostrovsky, JY Yu, BJ Dickson. et al.(2010). Sexual dimorphism in the fly brain. Current Biology.20:1589-1601. DOI: 10.1038/nrn.2016.125.
[7] DW Bayless, NM Shah. (2016). Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences.371. DOI: 10.1038/nrn.2016.125.
[8] A Kurtovic, A Widmer, BJ Dickson. (2007). A single class of olfactory neurons mediates behavioural responses to a sex pheromone. Nature.446:542-546. DOI: 10.1038/nrn.2016.125.
[9] S Inoue, R Yang, A Tantry, C-ha Davis. et al.(2019). Periodic remodeling in a neural circuit governs timing of female sexual behavior. Cell.179:1393-1408. DOI: 10.1038/nrn.2016.125.
[10] HK Inagaki, Y Jung, ED Hoopfer, AM Wong. et al.(2014). Optogenetic control of using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods.11:325-332. DOI: 10.1038/nrn.2016.125.
[11] M Wohl, K Ishii, K Asahina. (2020). Layered roles of fruitless isoforms inspecification and function of maleaggression-promoting neurons in. eLife.9. DOI: 10.1038/nrn.2016.125.
[12] M Wohl. (2019). GitHub. DOI: 10.1038/nrn.2016.125.
[13] KK Ishii, T Osakada, H Mori, N Miyasaka. et al.(2017). A Labeled-Line neural circuit for Pheromone-Mediated sexual behaviors in mice. Neuron.95:123-137. DOI: 10.1038/nrn.2016.125.
[14] TM Williams, SB Carroll. (2009). Genetic and molecular insights into the development and evolution of sexual dimorphism. Nature Reviews Genetics.10:797-804. DOI: 10.1038/nrn.2016.125.
[15] K Watanabe, H Chiu, BD Pfeiffer, AM Wong. et al.(2017). A circuit node that integrates convergent input from neuromodulatory and social Behavior-Promoting neurons to control aggression in. Neuron.95:1112-1128. DOI: 10.1038/nrn.2016.125.
[16] J Kohl, AD Ostrovsky, S Frechter, GS Jefferis. et al.(2013). A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell.155:1610-1623. DOI: 10.1038/nrn.2016.125.
[17] NE Miller. (1957). Experiments on motivation. Studies combining psychological, physiological, and pharmacological techniques. Science.126:1271-1278. DOI: 10.1038/nrn.2016.125.
[18] JM Koolhaas. (1978). Hypothalamically induced intraspecific aggressive behaviour in the rat. Experimental Brain Research.32:365-375. DOI: 10.1038/nrn.2016.125.
[19] RN Nagoshi, BS Baker. (1990). Regulation of sex-specific RNA splicing at the gene: -acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes & Development.4:89-97. DOI: 10.1038/nrn.2016.125.
[20] M Murthy. (2010). Unraveling the auditory system of. Current Opinion in Neurobiology.20:281-287. DOI: 10.1038/nrn.2016.125.
[21] JD Clyne, G Miesenböck. (2008). Sex-specific control and tuning of the pattern generator for courtship song in. Cell.133:354-363. DOI: 10.1038/nrn.2016.125.
[22] DE Bath, JR Stowers, D Hörmann, A Poehlmann. et al.(2014). FlyMAD: rapid thermogenetic control of neuronal activity in freely walking. Nature Methods.11:756-762. DOI: 10.1038/nrn.2016.125.
[23] G Lee, JC Hall, JH Park. (2002). Doublesex gene expression in the central nervous system of. Journal of Neurogenetics.16:229-248. DOI: 10.1038/nrn.2016.125.
[24] BS Baker, KA Ridge. (1980). Sex and the single cell. I. on the action of major loci affecting sex determination in. Genetics.94:383-423. DOI: 10.1038/nrn.2016.125.
[25] EJ Clowney, S Iguchi, JJ Bussell, E Scheer. et al.(2015). Multimodal chemosensory circuits controlling male courtship in. Neuron.87:1036-1049. DOI: 10.1038/nrn.2016.125.
[26] F Wang, K Wang, N Forknall, C Patrick. et al.(2020). Neural circuitry linking mating and egg laying in females. Nature.579:101-105. DOI: 10.1038/nrn.2016.125.
[27] W Hong, DW Kim, DJ Anderson. (2014). Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell.158:1348-1361. DOI: 10.1038/nrn.2016.125.
[28] E Azim, K Seki. (2019). Gain control in the sensorimotor system. Current Opinion in Physiology.8:177-187. DOI: 10.1038/nrn.2016.125.
[29] Y Wan, H Otsuna, HA Holman, B Bagley. et al.(2017). FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis. BMC Bioinformatics.18. DOI: 10.1038/nrn.2016.125.
[30] ED Hoopfer, Y Jung, HK Inagaki, GM Rubin. et al.(2015). P1 interneurons promote a persistent internal state that enhances inter-male aggression in. eLife.4. DOI: 10.1038/nrn.2016.125.
[31] P Coen, M Xie, J Clemens, M Murthy. et al.(2016). Sensorimotor transformations underlying variability in song intensity during Courtship. Neuron.89:629-644. DOI: 10.1038/nrn.2016.125.
[32] DJ Mellert, CC Robinett, BS Baker. (2012). Doublesex functions early and late in gustatory sense organ development. PLOS ONE.7. DOI: 10.1038/nrn.2016.125.
[33] SC Hoyer, A Eckart, A Herrel, T Zars. et al.(2008). Octopamine in male aggression of. Current Biology.18:159-167. DOI: 10.1038/nrn.2016.125.
[34] Y Wan, H Otsuna, CB Chien, C Hansen. et al.(2009). An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Transactions on Visualization and Computer Graphics.15:1489-1496. DOI: 10.1038/nrn.2016.125.
[35] MM McCarthy, CS Woolley, AP Arnold. (2017). Incorporating sex as a biological variable in neuroscience: what do we gain?. Nature Reviews Neuroscience.18:707-708. DOI: 10.1038/nrn.2016.125.
[36] BS McEwen. (1981). Neural gonadal steroid actions. Science.211:1303-1311. DOI: 10.1038/nrn.2016.125.
[37] J Clemens, P Coen, FA Roemschied, TD Pereira. et al.(2018). Discovery of a new song mode in reveals hidden structure in the sensory and neural drivers of behavior. Current Biology.28:2400-2412. DOI: 10.1038/nrn.2016.125.
[38] EZ Kvon, T Kazmar, G Stampfel, JO Yáñez-Cuna. et al.(2014). Genome-scale functional characterization of developmental enhancers. Nature.512:91-95. DOI: 10.1038/nrn.2016.125.
[39] DW Bayless, T Yang, MM Mason, AAT Susanto. et al.(2019). Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell.176:1190-1205. DOI: 10.1038/nrn.2016.125.
[40] G Lee, M Foss, SF Goodwin, T Carlo. et al.(2000). Spatial, temporal, and sexually dimorphic expression patterns of the fruitless gene in the central nervous system. Journal of Neurobiology.43:404-426. DOI: 10.1038/nrn.2016.125.
[41] DJ Mellert, JM Knapp, DS Manoli, GW Meissner. et al.(2010). Midline crossing by gustatory receptor neuron axons is regulated by and the roundabout receptors. Development.137:323-332. DOI: 10.1038/nrn.2016.125.
[42] MA Crickmore, LB Vosshall. (2013). Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in. Cell.155:881-893. DOI: 10.1038/nrn.2016.125.
[43] K Asahina, K Watanabe, BJ Duistermars, E Hoopfer. et al.(2014). Tachykinin-expressing neurons control male-specific aggressive arousal in. Cell.156:221-235. DOI: 10.1038/nrn.2016.125.
[44] M Costa, JD Manton, AD Ostrovsky, S Prohaska. et al.(2016). NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron.91:293-311. DOI: 10.1038/nrn.2016.125.
[45] TO Auer, R Benton. (2016). Sexual circuitry in. Current Opinion in Neurobiology.38:18-26. DOI: 10.1038/nrn.2016.125.
[46] JE Dalton, JM Fear, S Knott, BS Baker. et al.(2013). Male-specific fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics.14. DOI: 10.1038/nrn.2016.125.
[47] K Asahina. (2018). Sex differences in behavior: qualitative and quantitative dimorphism. Current Opinion in Physiology.6:35-45. DOI: 10.1038/nrn.2016.125.
[48] T Lee, L Luo. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron.22:451-461. DOI: 10.1038/nrn.2016.125.
[49] C Rezával, S Pattnaik, HJ Pavlou, T Nojima. et al.(2016). Activation of latent courtship circuitry in the brain of Females Induces Male-like Behaviors. Current Biology.26:2508-2515. DOI: 10.1038/nrn.2016.125.
[50] W Zhang, C Guo, D Chen, Q Peng. et al.(2018). Hierarchical control of sleep, courtship, and feeding behaviors by Male-Specific P1 neurons. Neuroscience Bulletin.34:1105-1110. DOI: 10.1038/nrn.2016.125.
[51] C Rezával, T Nojima, MC Neville, AC Lin. et al.(2014). Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in. Current Biology.24:725-730. DOI: 10.1038/nrn.2016.125.
[52] JY Yu, MI Kanai, E Demir, GS Jefferis. et al.(2010). Cellular organization of the neural circuit that drives Courtship Behavior. Current Biology : CB.20:1602-1614. DOI: 10.1038/nrn.2016.125.
[53] J Schindelin, I Arganda-Carreras, E Frise, V Kaynig. et al.(2012). Fiji: an open-source platform for biological-image analysis. Nature Methods.9:676-682. DOI: 10.1038/nrn.2016.125.
[54] R Remedios, A Kennedy, M Zelikowsky, BF Grewe. et al.(2017). Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature.550:388-392. DOI: 10.1038/nrn.2016.125.
[55] A Jenett, GM Rubin, TT Ngo, D Shepherd. et al.(2012). A GAL4-driver line resource for neurobiology. Cell Reports.2:991-1001. DOI: 10.1038/nrn.2016.125.
[56] TR Shirangi, BJ Taylor, M McKeown. (2006). A double-switch system regulates male courtship behavior in male and female. Nature Genetics.38:1435-1439. DOI: 10.1038/nrn.2016.125.
[57] SX Zhang, D Rogulja, MA Crickmore. (2016). Dopaminergic circuitry underlying mating drive. Neuron.91:168-181. DOI: 10.1038/nrn.2016.125.
[58] Y Jung, A Kennedy, H Chiu, F Mohammad. et al.(2020). Neurons that function within an integrator to promote a persistent behavioral state in. Neuron.105:322-333. DOI: 10.1038/nrn.2016.125.
[59] Q Ren, T Awasaki, YF Huang, Z Liu. et al.(2016). Cell Class-Lineage analysis reveals sexually dimorphic lineage compositions in the Brain. Current Biology.26:2583-2593. DOI: 10.1038/nrn.2016.125.
[60] MM McCarthy. (2008). Estradiol and the developing brain. Physiological Reviews.88:91-134. DOI: 10.1038/nrn.2016.125.
[61] V Ruta, SR Datta, ML Vasconcelos, J Freeland. et al.(2010). A dimorphic pheromone circuit in from sensory input to descending output. Nature.468:686-690. DOI: 10.1038/nrn.2016.125.
[62] CK Matson, D Zarkower. (2012). Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nature Reviews Genetics.13:163-174. DOI: 10.1038/nrn.2016.125.
[63] SA Juntti, J Tollkuhn, MV Wu, EJ Fraser. et al.(2010). The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. Neuron.66:260-272. DOI: 10.1038/nrn.2016.125.
[64] G Lee, JC Hall. (2000). A newly uncovered phenotype associated with the gene of : aggression-like head interactions between mutant males. Behavior Genetics.30:263-275. DOI: 10.1038/nrn.2016.125.
[65] H Lee, DW Kim, R Remedios, TE Anthony. et al.(2014). Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature.509:627-632. DOI: 10.1038/nrn.2016.125.
[66] LE Sanders, MN Arbeitman. (2008). Doublesex establishes sexual dimorphism in the central nervous system in an isoform-dependent manner by directing cell number. Developmental Biology.320:378-390. DOI: 10.1038/nrn.2016.125.
[67] DS Manoli, P Fan, EJ Fraser, NM Shah. et al.(2013). Neural control of sexually dimorphic behaviors. Current Opinion in Neurobiology.23:330-338. DOI: 10.1038/nrn.2016.125.
[68] SR Datta, ML Vasconcelos, V Ruta, S Luo. et al.(2008). The pheromone cVA activates a sexually dimorphic neural circuit. Nature.452:473-477. DOI: 10.1038/nrn.2016.125.
[69] HH Lin, DS Cao, S Sethi, Z Zeng. et al.(2016). Hormonal modulation of pheromone detection enhances male courtship success. Neuron.90:1272-1285. DOI: 10.1038/nrn.2016.125.
[70] E Demir, BJ Dickson. (2005). Fruitless splicing specifies male courtship behavior in. Cell.121:785-794. DOI: 10.1038/nrn.2016.125.
[71] D Yamamoto, M Koganezawa. (2013). Genes and circuits of courtship behaviour in males. Nature Reviews Neuroscience.14:681-692. DOI: 10.1038/nrn.2016.125.
[72] EJ Rideout, AJ Dornan, MC Neville, S Eadie. et al.(2010). Control of sexual differentiation and behavior by the gene in. Nature Neuroscience.13:458-466. DOI: 10.1038/nrn.2016.125.
[73] T Yang, CF Yang, MD Chizari, N Maheswaranathan. et al.(2017). Social control of Hypothalamus-Mediated male aggression. Neuron.95:955-970. DOI: 10.1038/nrn.2016.125.
[74] T Rohlfing, CR Maurer. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine.7:16-25. DOI: 10.1038/nrn.2016.125.
[75] H Ito, K Sato, M Koganezawa, M Ote. et al.(2012). Fruitless recruits two antagonistic chromatin factors to establish Single-Neuron sexual dimorphism. Cell.149:1327-1338. DOI: 10.1038/nrn.2016.125.
[76] Z Zheng, JS Lauritzen, E Perlman, CG Robinson. et al.(2018). A complete electron microscopy volume of the brain of adult. Cell.174:730-743. DOI: 10.1038/nrn.2016.125.
[77] W Zhang, MM Yartsev. (2019). Correlated neural activity across the brains of socially interacting bats. Cell.178:413-428. DOI: 10.1038/nrn.2016.125.
[78] IMA Ribeiro, M Drews, A Bahl, C Machacek. et al.(2018). Visual projection neurons mediating directed courtship in. Cell.174:607-621. DOI: 10.1038/nrn.2016.125.
[79] MV Wu, DS Manoli, EJ Fraser, JK Coats. et al.(2009). Estrogen masculinizes neural pathways and Sex-Specific behaviors. Cell.139:61-72. DOI: 10.1038/nrn.2016.125.
[80] H Ito, K Sato, S Kondo, R Ueda. et al.(2016). Fruitless represses transcription to shape Male-Specific neural morphology and behavior in. Current Biology.26:1532-1542. DOI: 10.1038/nrn.2016.125.
[81] EJ Rideout, JC Billeter, SF Goodwin. (2007). The sex-determination genes and specify a neural substrate required for courtship song. Current Biology.17:1473-1478. DOI: 10.1038/nrn.2016.125.
[82] ME Jacobs. (1960). Influence of light on mating of. Ecology.41:182-188. DOI: 10.1038/nrn.2016.125.
[83] L Luo, EM Callaway, K Svoboda. (2018). Genetic dissection of neural circuits: a decade of progress. Neuron.98. DOI: 10.1038/nrn.2016.125.
[84] DJ Anderson. (2016). Circuit modules linking internal states and social behaviour in flies and mice. Nature Reviews Neuroscience.17:692-704. DOI: 10.1038/nrn.2016.125.
[85] B Lu, A LaMora, Y Sun, MJ Welsh. et al.(2012). -Dependent chemosensory functions contribute to courtship behavior in. PLOS Genetics.8. DOI: 10.1038/nrn.2016.125.
[86] D Lin, MP Boyle, P Dollar, H Lee. et al.(2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature.470:221-226. DOI: 10.1038/nrn.2016.125.
[87] H Luan, NC Peabody, CR Vinson, BH White. et al.(2006). Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron.52:425-436. DOI: 10.1038/nrn.2016.125.
[88] C Zhou, R Franconville, AG Vaughan, CC Robinett. et al.(2015). Central neural circuitry mediating courtship song perception in male. eLife.4. DOI: 10.1038/nrn.2016.125.
[89] GS Jefferis, CJ Potter, AM Chan, EC Marin. et al.(2007). Comprehensive maps of higher olfactory centers: spatially segregated fruit and pheromone representation. Cell.128:1187-1203. DOI: 10.1038/nrn.2016.125.
[90] C Zhou, Y Pan, CC Robinett, GW Meissner. et al.(2014). Central brain neurons expressing regulate female receptivity in. Neuron.83:149-163. DOI: 10.1038/nrn.2016.125.
[91] Y Li, A Mathis, BF Grewe, JA Osterhout. et al.(2017). Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell.171:1176-1190. DOI: 10.1038/nrn.2016.125.
[92] CC Robinett, AG Vaughan, JM Knapp, BS Baker. et al.(2010). Sex and the single cell. II. there is a time and place for sex. PLOS Biology.8. DOI: 10.1038/nrn.2016.125.
[93] AA Robie, J Hirokawa, AW Edwards, LA Umayam. et al.(2017). Mapping the neural substrates of behavior. Cell.170:393-406. DOI: 10.1038/nrn.2016.125.
[94] H Dankert, L Wang, ED Hoopfer, DJ Anderson. et al.(2009). Automated monitoring and analysis of social behavior in. Nature Methods.6:297-303. DOI: 10.1038/nrn.2016.125.
[95] Y Li, C Dulac. (2018). Neural coding of sex-specific social information in the mouse brain. Current Opinion in Neurobiology.53:120-130. DOI: 10.1038/nrn.2016.125.
[96] H Toda, X Zhao, BJ Dickson. (2012). The female aphrodisiac pheromone activates ) sensory neurons to elicit male courtship behavior. Cell Reports.1:599-607. DOI: 10.1038/nrn.2016.125.
[97] T Kimchi, J Xu, C Dulac. (2007). A functional circuit underlying male sexual behaviour in the female mouse brain. Nature.448:1009-1014. DOI: 10.1038/nrn.2016.125.
[98] N Tinbergen. (1951). The Study of Instinct. DOI: 10.1038/nrn.2016.125.
[99] R Thistle, P Cameron, A Ghorayshi, L Dennison. et al.(2012). Contact chemoreceptors mediate Male-Male repulsion and Male-Female attraction during Courtship. Cell.149:1140-1151. DOI: 10.1038/nrn.2016.125.
[100] G Dietzl, D Chen, F Schnorrer, KC Su. et al.(2007). A genome-wide transgenic RNAi library for conditional gene inactivation in. Nature.448:151-156. DOI: 10.1038/nrn.2016.125.
[101] LS Qi, MH Larson, LA Gilbert, JA Doudna. et al.(2013). Repurposing CRISPR as an RNA-Guided platform for Sequence-Specific control of gene expression. Cell.152:1173-1183. DOI: 10.1038/nrn.2016.125.
[102] BD Pfeiffer, JW Truman, GM Rubin. (2012). Using translational enhancers to increase transgene expression in. PNAS.109:6626-6631. DOI: 10.1038/nrn.2016.125.
[103] P Ramdya, J Schneider, JD Levine. (2017). The neurogenetics of group behavior in. The Journal of Experimental Biology.220:35-41. DOI: 10.1038/nrn.2016.125.
[104] BE Ellendersen, AC von Philipsborn. (2017). Neuronal modulation of sexual behaviour. Current Opinion in Insect Science.24:21-28. DOI: 10.1038/nrn.2016.125.
[105] K Kimura, C Sato, M Koganezawa, D Yamamoto. et al.(2015). ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLOS ONE.10. DOI: 10.1038/nrn.2016.125.
[106] BJ Duistermars, BD Pfeiffer, ED Hoopfer, DJ Anderson. et al.(2018). A brain module for scalable control of complex, Multi-motor threat displays. Neuron.100:1474-1490. DOI: 10.1038/nrn.2016.125.
[107] K Kimura, T Hachiya, M Koganezawa, T Tazawa. et al.(2008). Fruitless and doublesex coordinate to generate Male-Specific neurons that can initiate courtship. Neuron.59:759-769. DOI: 10.1038/nrn.2016.125.
[108] K Kimura, M Ote, T Tazawa, D Yamamoto. et al.(2005). specifies sexually dimorphic neural circuitry in the brain. Nature.438:229-233. DOI: 10.1038/nrn.2016.125.
[109] E Starostina, T Liu, V Vijayan, Z Zheng. et al.(2012). A DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. Journal of Neuroscience.32:4665-4674. DOI: 10.1038/nrn.2016.125.
[110] D Deutsch, J Clemens, SY Thiberge, G Guan. et al.(2019). Shared song detector neurons in Male and Female Brains Drive Sex-Specific Behaviors. Current Biology.29:3200-3215. DOI: 10.1038/nrn.2016.125.
[111] TR Shirangi, AM Wong, JW Truman, DL Stern. et al.(2016). Doublesex regulates the connectivity of a neural circuit controlling Male Courtship Song. Developmental Cell.37:533-544. DOI: 10.1038/nrn.2016.125.
[112] D Deutsch, DA Pacheco, LJ Encarnacion-Rivera, T Pereira. et al.(2020). The neural basis for a persistent internal state in females. bioRxiv. DOI: 10.1038/nrn.2016.125.
[113] P Stockinger, D Kvitsiani, S Rotkopf, L Tirián. et al.(2005). Neural circuitry that governs male courtship behavior. Cell.121:795-807. DOI: 10.1038/nrn.2016.125.
[114] Y Pan, BS Baker. (2014). Genetic identification and separation of innate and experience-dependent courtship behaviors in. Cell.156:236-248. DOI: 10.1038/nrn.2016.125.
[115] HJ Pavlou, AC Lin, MC Neville, T Nojima. et al.(2016). Neural circuitry coordinating male copulation. eLife.5. DOI: 10.1038/nrn.2016.125.
[116] BD Pfeiffer, TT Ngo, KL Hibbard, C Murphy. et al.(2010). Refinement of tools for targeted gene expression in. Genetics.186:735-755. DOI: 10.1038/nrn.2016.125.
[117] S Dey, P Chamero, JK Pru, MS Chien. et al.(2015). Cyclic regulation of sensory perception by a female hormone alters behavior. Cell.161:1334-1344. DOI: 10.1038/nrn.2016.125.
[118] K Keleman, E Vrontou, S Krüttner, JY Yu. et al.(2012). Dopamine neurons modulate pheromone responses in courtship learning. Nature.489:145-149. DOI: 10.1038/nrn.2016.125.
[119] M Kabra, AA Robie, M Rivera-Alba, S Branson. et al.(2013). JAABA: interactive machine learning for automatic annotation of animal behavior. Nature Methods.10:64-67. DOI: 10.1038/nrn.2016.125.
[120] BJ Dickson. (2008). Wired for sex: the neurobiology of mating decisions. Science.322:904-909. DOI: 10.1038/nrn.2016.125.
[121] BR Kallman, H Kim, K Scott. (2015). Excitation and inhibition onto central courtship neurons biases mate choice. eLife.4. DOI: 10.1038/nrn.2016.125.
[122] AC von Philipsborn, S Jörchel, L Tirian, E Demir. et al.(2014). Cellular and behavioral functions of isoforms in courtship. Current Biology.24:242-251. DOI: 10.1038/nrn.2016.125.
[123] JC Hall. (1978). Courtship among males due to a male-sterile mutation. Behavior Genetics.8:125-141. DOI: 10.1038/nrn.2016.125.
[124] AC von Philipsborn, T Liu, JY Yu, C Masser. et al.(2011). Neuronal control of courtship song. Neuron.69:509-522. DOI: 10.1038/nrn.2016.125.
[125] S Haga, T Hattori, T Sato, K Sato. et al.(2010). The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature.466:118-122. DOI: 10.1038/nrn.2016.125.
[126] E Vrontou, SP Nilsen, E Demir, EA Kravitz. et al.(2006). regulates aggression and dominance in. Nature Neuroscience.9:1469-1471. DOI: 10.1038/nrn.2016.125.
[127] Y Grosjean, R Rytz, JP Farine, L Abuin. et al.(2011). An olfactory receptor for food-derived odours promotes male courtship in. Nature.478:236-240. DOI: 10.1038/nrn.2016.125.
[128] M Koganezawa, K Kimura, D Yamamoto. (2016). The neural circuitry that functions as a switch for courtship versus aggression in Males. Current Biology.26:1395-1403. DOI: 10.1038/nrn.2016.125.
[129] SP Nilsen, YB Chan, R Huber, EA Kravitz. et al.(2004). Gender-selective patterns of aggressive behavior in. PNAS.101:12342-12347. DOI: 10.1038/nrn.2016.125.
[130] Y Pan, GW Meissner, BS Baker. (2012). Joint control of male courtship behavior by motion cues and activation of male-specific P1 neurons. PNAS.109:10065-10070. DOI: 10.1038/nrn.2016.125.
[131] Y Pan, CC Robinett, BS Baker. (2011). Turning males on: activation of male courtship behavior in. PLOS ONE.6. DOI: 10.1038/nrn.2016.125.
[132] CB Palavicino-Maggio, YB Chan, C McKellar, EA Kravitz. et al.(2019). A small number of cholinergic neurons mediate hyperaggression in female. PNAS.116:17029-17038. DOI: 10.1038/nrn.2016.125.
[133] S Kohatsu, D Yamamoto. (2015). Visually induced initiation of innate courtship-like following pursuit is mediated by central excitatory state. Nature Communications.6. DOI: 10.1038/nrn.2016.125.
[134] S Kohatsu, M Koganezawa, D Yamamoto. (2011). Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in. Neuron.69:498-508. DOI: 10.1038/nrn.2016.125.
[135] JC Hall. (1994). The mating of a fly. Science.264:1702-1714. DOI: 10.1038/nrn.2016.125.
[136] DL Van Vactor, RL Cagan, H Krämer, SL Zipursky. et al.(1991). Induction in the developing compound eye of : multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell.67:1145-1155. DOI: 10.1038/nrn.2016.125.
[137] P Fan, DS Manoli, OM Ahmed, Y Chen. et al.(2013). Genetic and neural mechanisms that inhibit from mating with other species. Cell.154:89-102. DOI: 10.1038/nrn.2016.125.
[138] SC Vernes. (2015). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports.4. DOI: 10.1038/nrn.2016.125.
[139] E Eyjolfsdottir, S Branson, XP Burgos-Artizzu, ED Hoopfer. et al.(2014). Detecting social actions of fruit flies. Computer Vision .8690:772-787. DOI: 10.1038/nrn.2016.125.
[140] L Kingsbury, S Huang, J Wang, K Gu. et al.(2019). Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell.178:429-446. DOI: 10.1038/nrn.2016.125.
[141] A Villella, DA Gailey, B Berwald, S Ohshima. et al.(1997). Extended reproductive roles of the gene in revealed by behavioral analysis of new mutants. Genetics.147:1107-1130. DOI: 10.1038/nrn.2016.125.
[142] A Nern, BD Pfeiffer, K Svoboda, GM Rubin. et al.(2011). Multiple new site-specific recombinases for use in manipulating animal genomes. PNAS.108:14198-14203. DOI: 10.1038/nrn.2016.125.
[143] JQ Ni, LP Liu, R Binari, R Hardy. et al.(2009). A resource of transgenic RNAi lines for neurogenetics. Genetics.182:1089-1100. DOI: 10.1038/nrn.2016.125.
[144] MC Neville, T Nojima, E Ashley, DJ Parker. et al.(2014). Male-specific fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system. Current Biology.24:229-241. DOI: 10.1038/nrn.2016.125.
[145] NC Klapoetke, Y Murata, SS Kim, SR Pulver. et al.(2014). Independent optical excitation of distinct neural populations. Nature Methods.11:338-346. DOI: 10.1038/nrn.2016.125.
[146] DA Gailey, JC Billeter, JH Liu, F Bauzon. et al.(2006). Functional conservation of the male sex-determination gene across 250 myr of insect evolution. Molecular Biology and Evolution.23:633-643. DOI: 10.1038/nrn.2016.125.
[147] SL Klein, L Schiebinger, ML Stefanick, L Cahill. et al.(2015). Opinion: sex inclusion in basic research drives discovery. PNAS.112:5257-5258. DOI: 10.1038/nrn.2016.125.
[148] A Ueda, Y Kidokoro. (2002). Aggressive behaviours of female are influenced by their social experience and food resources. Physiological Entomology.27:21-28. DOI: 10.1038/nrn.2016.125.