首页 » 文章 » 文章详细信息
COMPLEXITY Volume 2020 ,2020-03-26
Energy- and Resource-Aware Computation Offloading for Complex Tasks in Edge Environment
Research Article
Kai Peng 1 Bohai Zhao 1 Shengjun Xue 2 Qingjia Huang 3
Show affiliations
DOI:10.1155/2020/9548262
Received 2019-11-07, accepted for publication 2020-01-06, Published 2020-03-26
PDF
摘要

Mobile users typically have a series of complex tasks consisting of time-constrained workflows and concurrent workflows that need to be processed. However, these tasks cannot be performed directly locally due to resource limitations of the mobile terminal, especially for battery life. Fortunately, mobile edge computing (MEC) has been recognized as a promising technology which brings abundant resource at the edge of mobile network enabling mobile devices to overcome the resource and capacity constraints. However, edge servers, such as cloudlets, are heterogeneous and have limited resources. Thus, it is important to make an appropriate offloading strategy to maximize the utility of each cloudlet. In view of this, the time consumption and energy consumption of mobile devices and resource utilization of cloudlets have been taken into consideration in this study. Firstly, a multiconstraint workflow mode has been established, and then a multiobjective optimization mode is formulated. Technically, an improved optimization algorithm is proposed to address this mode based on Nondominated Sorting Genetic Algorithm II. Both extensive experimental evaluations and detailed theoretical analysis are conducted to show that the proposed method is effective and efficiency.

授权许可

Copyright © 2020 Kai Peng et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Shengjun Xue.School of Computer Science and Technology, Silicon Lake College, Suzhou, China, usl.edu.cn.sjxue@163.com

推荐引用方式

Kai Peng,Bohai Zhao,Shengjun Xue,Qingjia Huang. Energy- and Resource-Aware Computation Offloading for Complex Tasks in Edge Environment. COMPLEXITY ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. Li, M. He, W. Wu, A. Sangaiah. et al.(2018). Computation offloading algorithm for arbitrarily divisible applications in mobile edge computing environments: an OCR case. Sustainability.10(5):1611. DOI: 10.1109/tcss.2019.2906925.
[2] L. Qi, Q. He, F. Chen. (2019). Finding all you need: web APIs recommendation in web of things through keywords search. IEEE Transactions on Computational Social Systems.6(5):1063-1072. DOI: 10.1109/tcss.2019.2906925.
[3] Y. Hao, M. Chen, L. Hu, M. S. Hossain. et al.(2018). Energy efficient task caching and offloading for mobile edge computing. IEEE Access.6:11365-11373. DOI: 10.1109/tcss.2019.2906925.
[4] L. Qi, Y. Chen, Y. Yuan, S. Fu. et al.(2019). A Qos-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web:1-23. DOI: 10.1109/tcss.2019.2906925.
[5] X. Xu, S. Fu, Q. Cai. (2018). Dynamic resource allocation for load balancing in fog environment. Wireless Communications and Mobile Computing.2018-15. DOI: 10.1109/tcss.2019.2906925.
[6] S. Guo, B. Xiao, Y. Yang, Y. Yang. et al.Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. :1-9. DOI: 10.1109/tcss.2019.2906925.
[7] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen. et al.The case for cyber foraging. :87-92. DOI: 10.1109/tcss.2019.2906925.
[8] Z. Chen, J. Hu, G. Min, X. Chen. et al.(2019). Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization. Concurrency and Computation: Practice and Experience. DOI: 10.1109/tcss.2019.2906925.
[9] K. Peng, M. Zhu, Y. Zhang. (2019). An energy- and cost-aware computation offloading method for workflow applications in mobile edge computing. EURASIP Journal on Wireless Communications and Networking.2019(1). DOI: 10.1109/tcss.2019.2906925.
[10] W. Shi, F. Liu, H. Sun, Q. Pei. et al.(2018). Edge Computing. DOI: 10.1109/tcss.2019.2906925.
[11] K. Gai, M. Qiu, H. Zhao. (2018). Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. Journal of Parallel and Distributed Computing.111:126-135. DOI: 10.1109/tcss.2019.2906925.
[12] L. Qi, R. Wang, C. Hu, S. Li. et al.(2019). Time-aware distributed service recommendation with privacy-preservation. Information Sciences.480:354-364. DOI: 10.1109/tcss.2019.2906925.
[13] Y. Sun, F. Lin, H. Xu. (2018). Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wireless Personal Communications.102(2):1369-1385. DOI: 10.1109/tcss.2019.2906925.
[14] X. Xu, X. Zhang, H. Gao, Y. Xue. et al.(2019). Become: blockchain-enabled computation offloading for iot in mobile edge computing. IEEE Transactions on Industrial Informatics. DOI: 10.1109/tcss.2019.2906925.
[15] W. Quan, Y. Liu, H. Zhang, S. Yu. et al.(2017). Enhancing crowd collaborations for software defined vehicular networks. IEEE Communications Magazine.55(8):80-86. DOI: 10.1109/tcss.2019.2906925.
[16] K. Peng, Y. Zhang, X. Wang, X. Xu. et al.(2019). Computation Offloading in Mobile Edge Computing. DOI: 10.1109/tcss.2019.2906925.
[17] X. Xu, C. He, Z. Xu, L. Qi. et al.(2019). Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet of Things Journal. DOI: 10.1109/tcss.2019.2906925.
[18] K. Peng, V. C. M. Leung, X. Xu, L. Zheng. et al.(2018). A survey on mobile edge computing: focusing on service adoption and provision. Wireless Communications and Mobile Computing.2018-16. DOI: 10.1109/tcss.2019.2906925.
[19] Y. Mao, C. You, J. Zhang, K. Huang. et al.(2017). Mobile edge computing: survey and research outlook. . DOI: 10.1109/tcss.2019.2906925.
[20] H. Wu, W. Knottenbelt, K. Wolter. (2019). An efficient application partitioning algorithm in mobile environments. IEEE Transactions on Parallel and Distributed Systems.30(7):1464-1480. DOI: 10.1109/tcss.2019.2906925.
[21] R. Roman, J. Lopez, M. Mambo. (2018). Mobile edge computing, Fog et al.: a survey and analysis of security threats and challenges. Future Generation Computer Systems.78:680-698. DOI: 10.1109/tcss.2019.2906925.
[22] M. Jia, J. Cao, L. Yang. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing. :352-357. DOI: 10.1109/tcss.2019.2906925.
[23] T. Shi, M. Yang, X. Li, Q. Lei. et al.(2016). An energy-efficient scheduling scheme for time-constrained tasks in local mobile clouds. Pervasive and Mobile Computing.27:90-105. DOI: 10.1109/tcss.2019.2906925.
[24] K. Zhang, Y. Mao, S. Leng. (2016). Energy-efficient offloading for mobile edge computing in 5 g heterogeneous networks. IEEE Access.4:5896-5907. DOI: 10.1109/tcss.2019.2906925.
[25] Y. Zhang, G. Cui, S. Deng, F. Chen. et al.(2018). Efficient query of quality correlation for service composition. IEEE Transactions on Services Computing. DOI: 10.1109/tcss.2019.2906925.
[26] B. Liu, H. Huang, S. Guo, W. Chen. et al.Joint computation offloading and routing optimization for uav-edge-cloud computing environments. :1745-1752. DOI: 10.1109/tcss.2019.2906925.
[27] E. Benkhelifa, T. Welsh, L. Tawalbeh, Y. Jararweh. et al.(2015). User profiling for energy optimisation in mobile cloud computing. Procedia Computer Science.52:1159-1165. DOI: 10.1109/tcss.2019.2906925.
[28] E. Ahmed, M. H. Rehmani. (2017). Mobile Edge Computing: Opportunities, Solutions, and Challenges. DOI: 10.1109/tcss.2019.2906925.
[29] H. Peng, W.-S. Wen, M.-L. Tseng, L.-L. Li. et al.(2019). Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment. Applied Soft Computing.80:534-545. DOI: 10.1109/tcss.2019.2906925.
[30] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo. et al.(2014). A queuing theory model for cloud computing. The Journal of Supercomputing.69(1):492-507. DOI: 10.1109/tcss.2019.2906925.
[31] W. Quan, N. Cheng, M. Qin, H. Zhang. et al.(2018). Adaptive transmission control for software defined vehicular networks. IEEE Wireless Communications Letters.8(3):653-656. DOI: 10.1109/tcss.2019.2906925.
[32] Y. Liu, M. J. Lee, Y. Zheng. (2015). Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Transactions on Mobile Computing.15(10):2398-2410. DOI: 10.1109/tcss.2019.2906925.
[33] X. Xu, S. Fu, Y. Yuan. (2018). Multiobjective computation offloading for workflow management in cloudlet-based mobile cloud using NSGA-II. Computational Intelligence.35(3):476-495. DOI: 10.1109/tcss.2019.2906925.
[34] C. Wang, C. Liang, F. R. Yu, Q. Chen. et al.(2017). Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Transactions on Wireless Communications.16(8):4924-4938. DOI: 10.1109/tcss.2019.2906925.
[35] Y. Zhang, C. Yin, Q. Wu, Q. He. et al.(2019). Location-aware deep collaborative filtering for service recommendation. IEEE Transactions on Systems, Man, and Cybernetics: Systems:1-12. DOI: 10.1109/tcss.2019.2906925.
[36] X. Xu, Y. Chen, X. Zhang, Q. Liu. et al.(2019). A blockchain-based computation offloading method for edge computing in 5 g networks. Software: Practice and Experience. DOI: 10.1109/tcss.2019.2906925.
[37] S. Deng, L. Huang, J. Taheri, A. Y. Zomaya. et al.(2014). Computation offloading for service workflow in mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems.26(12):3317-3329. DOI: 10.1109/tcss.2019.2906925.
[38] Y. Wang, L. Wu, X. Yuan, X. Liu. et al.(2019). An energy-efficient and deadline-aware task offloading strategy based on channel constraint for mobile cloud workflows. IEEE Access.7:69858-69872. DOI: 10.1109/tcss.2019.2906925.
[39] X. Xu, Q. Liu, Y. Luo. (2019). A computation offloading method over big data for iot-enabled cloud-edge computing. Future Generation Computer Systems.95:522-533. DOI: 10.1109/tcss.2019.2906925.
[40] K. Dolui, S. K. Datta. Comparison of edge computing implementations: fog computing, cloudlet and mobile edge computing. :1-6. DOI: 10.1109/tcss.2019.2906925.
[41] M. Chen, Y. Hao. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications.36(3):587-597. DOI: 10.1109/tcss.2019.2906925.
[42] T. Huang, F. Ruan, S. Xue, L. Qi. et al.(2019). Computation offloading for multimedia Workflows with deadline constraints in cloudlet-based mobile cloud. Wireless Networks:1-15. DOI: 10.1109/tcss.2019.2906925.
[43] C. V. Forecast. (2019). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper. DOI: 10.1109/tcss.2019.2906925.
[44] Y. Zhang, K. Wang, Q. He. (2019). Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Transactions on Services Computing. DOI: 10.1109/tcss.2019.2906925.
[45] F.-H. Tseng, H.-H. Cho, K.-D. Chang, J.-C. Li. et al.(2018). Application-oriented offloading in heterogeneous networks for mobile cloud computing. Enterprise Information Systems.12(4):398-413. DOI: 10.1109/tcss.2019.2906925.
[46] P. Mach, Z. Becvar. (2017). Mobile edge computing: a survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials.19(3):1628-1656. DOI: 10.1109/tcss.2019.2906925.
[47] S. Wang, Y. Zhao, J. Xu, J. Yuan. et al.(2019). Edge server placement in mobile edge computing. Journal of Parallel and Distributed Computing.127:160-168. DOI: 10.1109/tcss.2019.2906925.
[48] X. Xu, Y. Xue, L. Qi. (2019). An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Generation Computer Systems.96:89-100. DOI: 10.1109/tcss.2019.2906925.
[49] X. Xu, Y. Li, T. Huang. (2019). An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. Journal of Network and Computer Applications.133:75-85. DOI: 10.1109/tcss.2019.2906925.
[50] A. Zhu, S. Guo, M. Ma. Computation offloading for workflow in mobile edge computing based on deep Q-learning. :1-5. DOI: 10.1109/tcss.2019.2906925.
文献评价指标
浏览 92次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 0次