首页 » 文章 » 文章详细信息
BioMed Research International Volume 2020 ,2020-03-28
Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation
Research Article
Zhenhui Liu 1 Maimaiaili Yushan 1 Yamuhanmode Alike 1 Yanshi Liu 1 Shuo Wu 1 Chuang Ma 1 Aihemaitijiang Yusufu 1
Show affiliations
DOI:10.1155/2020/4794982
Received 2019-09-23, accepted for publication 2020-02-22, Published 2020-03-28
PDF
摘要

Objectives. To prepare the conductive MWCNT (multiwall carbon nanotube)-agarose scaffolds with multi-microchannel for neuron growth under electrical stimulation. Methods. The scaffolds were produced by gradient freeze and lyophilization methods. The synthesized materials were characterized by SEM and near-infrared spectroscopy, and their microstructure, swelling-deswelling, conductivity, biocompatibility, and shape memory behavior were measured. A three-dimensional culture model by implanting cells into scaffolds was built, and the behaviors of RSC96 cells on scaffolds under electrical stimulation were evaluated. Results. The addition of MWCNT did not affect the pore composition ratio and shape memory of agarose scaffolds, but 0.025% wt MWCNT in scaffolds improved the swelling ratio and water retention at the swelling equilibrium state. Though MWCNTs in high concentration had slight effect on proliferation of RSC96 cells and PC12 cells, there was no difference that the expressions of neurofilament of RSC96 cells on scaffolds with MWCNTs of different concentration. RSC96 cells arranged better along the longitudinal axis of scaffolds and showed better adhesion on both 0.025% MWCNT-agarose scaffolds and 0.05% MWCNT-agarose scaffolds compared to other scaffolds. Conclusions. Agarose scaffolds with MWCNTs possessed promising applicable prospect in peripheral nerve defects.

授权许可

Copyright © 2020 Zhenhui Liu et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Chuang Ma.Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, Uygur Autonomous Region, China, xjmu.edu.cn.chuangma126@126.com
2. Aihemaitijiang Yusufu.Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, Uygur Autonomous Region, China, xjmu.edu.cn.aihemaitij@126.com

推荐引用方式

Zhenhui Liu,Maimaiaili Yushan,Yamuhanmode Alike,Yanshi Liu,Shuo Wu,Chuang Ma,Aihemaitijiang Yusufu. Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation. BioMed Research International ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. Dong, P. X. Ma, B. Guo. (2020). Conductive biomaterials for muscle tissue engineering. Biomaterials.229, article 119584. DOI: 10.1007/s11064-017-2175-2.
[2] Y. Sun, Q. Quan, H. Meng, Y. Zheng. et al.(2019). Enhanced neurite outgrowth on a multiblock conductive nerve scaffold with self-powered electrical stimulation. Advanced Healthcare Materials.8(10, article e1900127). DOI: 10.1007/s11064-017-2175-2.
[3] A. Bozkurt, F. Lassner, D. O'Dey, R. Deumens. et al.(2012). The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials.33(5):1363-1375. DOI: 10.1007/s11064-017-2175-2.
[4] J. Ramón-Azcón, S. Ahadian, M. Estili, X. Liang. et al.(2013). Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Advanced Materials.25(29):4028-4034. DOI: 10.1007/s11064-017-2175-2.
[5] X. Zheng, K. M. Woeppel, A. Y. Griffith, E. Chang. et al.(2019). Soft conducting elastomer for peripheral nerve Interface. Advanced Healthcare Materials.8(9, article e1801311). DOI: 10.1007/s11064-017-2175-2.
[6] Q. Zeng, Y. Han, H. Li, J. Chang. et al.(2015). Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B.3(45):8856-8864. DOI: 10.1007/s11064-017-2175-2.
[7] L. Wang, Y. Wu, T. Hu, P. X. Ma. et al.(2019). Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomaterialia.96:175-187. DOI: 10.1007/s11064-017-2175-2.
[8] A. Nel, T. Xia, L. Madler, N. Li. et al.(2006). Toxic potential of materials at the nanolevel. Science.311(5761):622-627. DOI: 10.1007/s11064-017-2175-2.
[9] C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick. et al.(2019). Jammed microgel inks for 3D printing applications. Advanced Science.6(1, article 1801076). DOI: 10.1007/s11064-017-2175-2.
[10] H. Yan, A. Gong, H. He, J. Zhou. et al.(2006). Adsorption of microcystins by carbon nanotubes. Chemosphere.62(1):142-148. DOI: 10.1007/s11064-017-2175-2.
[11] N. Singh, J. Chen, K. K. Koziol, K. R. Hallam. et al.(2016). Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale.8(15):8288-8299. DOI: 10.1007/s11064-017-2175-2.
[12] X. Liu, T. Song, M. Chang, L. Meng. et al.(2018). Carbon nanotubes reinforced maleic anhydride-modified xylan-g-poly(N-isopropylacrylamide) hydrogel with multifunctional properties. Materials.11(3):354. DOI: 10.1007/s11064-017-2175-2.
[13] X. Liu, A. L. Miller, S. Park, B. E. Waletzki. et al.(2017). Functionalized carbon nanotube and Graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Applied Materials & Interfaces.9(17):14677-14690. DOI: 10.1007/s11064-017-2175-2.
[14] Y. Zhu, L. Kong, F. Farhadi, W. Xia. et al.(2019). An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials.192:149-158. DOI: 10.1007/s11064-017-2175-2.
[15] H. Wang, P. Li, D. Yu, Y. Zhang. et al.(2018). Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Letters.18(6):3344-3351. DOI: 10.1007/s11064-017-2175-2.
[16] X. Chen, C. Liu, Z. Huang, X. Pu. et al.(2019). Preparation of carboxylic graphene oxide-composited polypyrrole conduits and their effect on sciatic nerve repair under electrical stimulation. Journal of Biomedical Materials Research Part A.107(12):2784-2795. DOI: 10.1007/s11064-017-2175-2.
[17] X. Zhao, B. Guo, H. Wu, Y. Liang. et al.(2018). Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nature Communications.9(1):2784. DOI: 10.1007/s11064-017-2175-2.
[18] M. Iafisco, E. Varoni, E. Battistella, S. Pietronave. et al.(2010). The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation. The International Journal of Artificial Organs.33(11):765-774. DOI: 10.1007/s11064-017-2175-2.
[19] Y. Wu, L. Wang, B. Guo, P. X. Ma. et al.(2017). Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano.11(6):5646-5659. DOI: 10.1007/s11064-017-2175-2.
[20] X. L. Xu, J. Lou, T. Tang, K. W. Ng. et al.(2005). Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials.75B(2):289-303. DOI: 10.1007/s11064-017-2175-2.
[21] Y. Alike, M. Yushan, A. Keremu, A. Abulaiti. et al.(2019). Application of custom anatomy-based nerve conduits on rabbit sciatic nerve defects: \ and evaluations. Neural Regeneration Research.14(12):2173-2182. DOI: 10.1007/s11064-017-2175-2.
[22] S. J. Lee, W. Zhu, M. Nowicki, G. Lee. et al.(2018). 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. Journal of Neural Engineering.15(1, article 016018). DOI: 10.1007/s11064-017-2175-2.
[23] S. Stokols, M. H. Tuszynski. (2006). Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials.27(3):443-451. DOI: 10.1007/s11064-017-2175-2.
[24] I. M. Taylor, N. A. Patel, N. C. Freedman, E. Castagnola. et al.(2019). Direct in vivo electrochemical detection of resting dopamine using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube functionalized microelectrodes. Analytical Chemistry.91(20):12917-12927. DOI: 10.1007/s11064-017-2175-2.
[25] P. Sambyal, A. Iqbal, J. Hong, H. Kim. et al.(2019). Ultralight and mechanically robust TiCT Hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces.11(41):38046-38054. DOI: 10.1007/s11064-017-2175-2.
[26] O. A. Sulaiman, T. Gordon. (2000). Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia.32(3):234-246. DOI: 10.1007/s11064-017-2175-2.
[27] M. Chen, Y. Sun, J. Liang, G. Zeng. et al.(2019). Understanding the influence of carbon nanomaterials on microbial communities. Environment International.126:690-698. DOI: 10.1007/s11064-017-2175-2.
[28] K. Haastert-Talini, R. Schmitte, N. Korte, D. Klode. et al.(2011). Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. Journal of Neurotrauma.28(4):661-674. DOI: 10.1007/s11064-017-2175-2.
[29] T. R. Fadel, T. M. Fahmy. (2014). Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends in Biotechnology.32(4):198-209. DOI: 10.1007/s11064-017-2175-2.
[30] R. Vadivelu, N. Kashaninejad, K. R. Sreejith, R. Bhattacharjee. et al.(2018). Cryoprotectant-free freezing of cells using liquid marbles filled with hydrogel. ACS Applied Materials & Interfaces.10(50):43439-43449. DOI: 10.1007/s11064-017-2175-2.
[31] R. M. Felfel, M. J. Gideon-Adeniyi, K. M. Zakir Hossain, G. A. F. Roberts. et al.(2019). Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydrate Polymers.204:59-67. DOI: 10.1007/s11064-017-2175-2.
[32] A. J. Ryan, W. A. Lackington, A. J. Hibbitts, A. Matheson. et al.(2017). A physicochemically optimized and neuroconductive biphasic nerve guidance conduit for peripheral nerve repair. Advanced Healthcare Materials.6(24, article 1700954). DOI: 10.1007/s11064-017-2175-2.
[33] T. Gordon, T. M. Brushart, K. M. Chan. (2008). Augmenting nerve regeneration with electrical stimulation. Neurological Research.30(10):1012-1022. DOI: 10.1007/s11064-017-2175-2.
[34] C. C. Hsu, A. Serio, N. Amdursky, C. Besnard. et al.(2018). Fabrication of Hemin-doped serum albumin-based fibrous scaffolds for neural tissue engineering applications. ACS Applied Materials & Interfaces.10(6):5305-5317. DOI: 10.1007/s11064-017-2175-2.
[35] S. Stokols, M. H. Tuszynski. (2004). The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials.25(27):5839-5846. DOI: 10.1007/s11064-017-2175-2.
[36] B. Singh, Q. G. Xu, C. K. Franz, R. Zhang. et al.(2012). Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. Journal of Neurosurgery.116(3):498-512. DOI: 10.1007/s11064-017-2175-2.
[37] F. Rossi, M. Santoro, T. Casalini, P. Veglianese. et al.(2011). Characterization and degradation behavior of agar-carbomer based hydrogels for drug delivery applications: solute effect. International Journal of Molecular Sciences.12(6):3394-3408. DOI: 10.1007/s11064-017-2175-2.
[38] M. Montgomery, S. Ahadian, L. Davenport Huyer, M. Lo Rito. et al.(2017). Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials.16(10):1038-1046. DOI: 10.1007/s11064-017-2175-2.
[39] Q. L. Loh, C. Choong. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews.19(6):485-502. DOI: 10.1007/s11064-017-2175-2.
[40] M. Sadeghi, H. Hosseinzadeh. (2013). Synthesis and properties of collagen-g-poly(sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Brazilian Journal of Chemical Engineering.30(2):379-389. DOI: 10.1007/s11064-017-2175-2.
[41] M. Watanabe, Y. Nakamura, Z. Michalak, N. Isobe. et al.(2019). Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology.93(13):e1299-e1311. DOI: 10.1007/s11064-017-2175-2.
[42] C. Wang, Z. Z. Pan, W. Lv, B. Liu. et al.(2019). A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small.15(14, article e1805363). DOI: 10.1007/s11064-017-2175-2.
[43] Y. Gu, Y. Tabata, Y. Kawakami, A. N. Balamurugan. et al.(2017). Development of a new method to induce angiogenesis at subcutaneous site of Streptozotocin-induced diabetic rats for islet transplantation. Cell Transplantation.10(4-5):453-457. DOI: 10.1007/s11064-017-2175-2.
[44] S. Wang, C. Sun, S. Guan, W. Li. et al.(2017). Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. Journal of Materials Chemistry B.5(24):4774-4788. DOI: 10.1007/s11064-017-2175-2.
[45] Y. Wu, L. Wang, B. Guo, Y. Shao. et al.(2016). Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials.87:18-31. DOI: 10.1007/s11064-017-2175-2.
[46] Y. Kazemi, A. Ramezani Kakroodi, A. Ameli, T. Filleter. et al.(2018). Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. Journal of Materials Chemistry C.6(2):350-359. DOI: 10.1007/s11064-017-2175-2.
[47] M. El Soury, G. Gambarotta. (2019). Soluble neuregulin-1 (NRG1): a factor promoting peripheral nerve regeneration by affecting Schwann cell activity immediately after injury. Neural Regeneration Research.14(8):1374-1375. DOI: 10.1007/s11064-017-2175-2.
[48] Y. Wu, L. Wang, T. Hu, P. X. Ma. et al.(2018). Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. Journal of Colloid and Interface Science.518:252-262. DOI: 10.1007/s11064-017-2175-2.
[49] J. W. Griffin, M. V. Hogan, A. B. Chhabra, D. N. Deal. et al.(2013). Peripheral nerve repair and reconstruction. The Journal of Bone and Joint Surgery-American Volume.95(23):2144-2151. DOI: 10.1007/s11064-017-2175-2.
[50] T. M. Brushart, P. N. Hoffman, R. M. Royall, B. B. Murinson. et al.(2002). Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. The Journal of Neuroscience.22(15):6631-6638. DOI: 10.1007/s11064-017-2175-2.
[51] E. Varoni, M. Tschon, B. Palazzo, P. Nitti. et al.(2012). Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connective Tissue Research.53(6):548-554. DOI: 10.1007/s11064-017-2175-2.
[52] Z. Atoufi, P. Zarrintaj, G. H. Motlagh, A. Amiri. et al.(2017). A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of Biomaterials Science, Polymer Edition.28(15):1617-1638. DOI: 10.1007/s11064-017-2175-2.
[53] D. Grinsell, C. P. Keating. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Research International.2014-13. DOI: 10.1007/s11064-017-2175-2.
[54] E. Asensio-Pinilla, E. Udina, J. Jaramillo, X. Navarro. et al.(2009). Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Experimental Neurology.219(1):258-265. DOI: 10.1007/s11064-017-2175-2.
[55] T. M. Brushart, R. Jari, V. Verge, C. Rohde. et al.(2005). Electrical stimulation restores the specificity of sensory axon regeneration. Experimental Neurology.194(1):221-229. DOI: 10.1007/s11064-017-2175-2.
[56] S. Fernandez-Cossio, A. Leon-Mateos, F. G. Sampedro, M. T. Oreja. et al.(2007). Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plastic and Reconstructive Surgery.120(5):1161-1169. DOI: 10.1007/s11064-017-2175-2.
[57] G. J. Alonso, J. L. A. Rivera, A. M. M. Mendoza, M. L. H. Mendez. et al.(2007). Effect of temperature and pH on swelling behavior of hydroxyethyl cellullose-acrylamide hydrogel. e-Polymers.7(1). DOI: 10.1007/s11064-017-2175-2.
[58] J. L. Paris, N. Lafuente-Gomez, M. V. Cabanas, J. Roman. et al.(2019). Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomaterialia.86:441-449. DOI: 10.1007/s11064-017-2175-2.
[59] S. R. Shin, H. Bae, J. M. Cha, J. Y. Mun. et al.(2012). Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano.6(1):362-372. DOI: 10.1007/s11064-017-2175-2.
[60] H. Zhang, A. Patel, A. K. Gaharwar, S. M. Mihaila. et al.(2013). Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules.14(5):1299-1310. DOI: 10.1007/s11064-017-2175-2.
[61] Y. Bai, I. S. Park, S. J. Lee, T. S. Bae. et al.(2011). Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon.49(11):3663-3671. DOI: 10.1007/s11064-017-2175-2.
[62] P. Zucca, R. Fernandez-Lafuente, E. Sanjust. (2016). Agarose and its derivatives as supports for enzyme immobilization. Molecules.21(11):1577. DOI: 10.1007/s11064-017-2175-2.
[63] A. N. Koppes, K. W. Keating, A. L. McGregor, R. A. Koppes. et al.(2016). Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomaterialia.39:34-43. DOI: 10.1007/s11064-017-2175-2.
[64] B. Guo, P. X. Ma. (2018). Conducting polymers for tissue engineering. Biomacromolecules.19(6):1764-1782. DOI: 10.1007/s11064-017-2175-2.
[65] L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani. et al.(2011). Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine.5(4):e17-e35. DOI: 10.1007/s11064-017-2175-2.
[66] K. Haastert-Talini, C. Grothe. (2013). Electrical stimulation for promoting peripheral nerve regeneration. International Review of Neurobiology.109:111-124. DOI: 10.1007/s11064-017-2175-2.
[67] S. Reddy, Q. Xiao, H. Liu, C. Li. et al.(2019). Bionanotube/poly(3,4-ethylenedioxythiophene) nanohybrid as an electrode for the neural Interface and dopamine sensor. ACS Applied Materials & Interfaces.11(20):18254-18267. DOI: 10.1007/s11064-017-2175-2.
[68] Z. Atoufi, P. Zarrintaj, G. H. Motlagh, A. Amiri. et al.(2017). A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of Biomaterials Science, Polymer Edition.28(15):1617-1638. DOI: 10.1007/s11064-017-2175-2.
[69] B. Han, J. Y. Zhao, W. T. Wang, Z. W. Li. et al.(2017). Cdc42 promotes Schwann cell proliferation and migration through Wnt/-Catenin and p38 MAPK signaling pathway after sciatic nerve injury. Neurochemical Research.42(5):1317-1324. DOI: 10.1007/s11064-017-2175-2.
[70] R. Balint, N. J. Cassidy, S. H. Cartmell. (2014). Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomaterialia.10(6):2341-2353. DOI: 10.1007/s11064-017-2175-2.
[71] D. M. Pedrotty, V. Kuzmenko, E. Karabulut, A. M. Sugrue. et al.(2019). Three-dimensional printed biopatches with conductive ink facilitate cardiac conduction when applied to disrupted myocardium. Circulation. Arrhythmia and Electrophysiology.12(3, article e006920). DOI: 10.1007/s11064-017-2175-2.
[72] A. Scarano, F. Carinci, A. Piattelli. (2009). Lip augmentation with a new filler (agarose gel): a 3-year follow-up study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics.108(2):e11-e15. DOI: 10.1007/s11064-017-2175-2.
[73] A. A. Al-Majed, C. M. Neumann, T. M. Brushart, T. Gordon. et al.(2000). Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. The Journal of Neuroscience.20(7):2602-2608. DOI: 10.1007/s11064-017-2175-2.
[74] R. K. Liem. (1990). Neuronal intermediate filaments. Current Opinion in Cell Biology.2(1):86-90. DOI: 10.1007/s11064-017-2175-2.
文献评价指标
浏览 15次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次