首页 » 文章 » 文章详细信息
Journal of Oncology Volume 2020 ,2020-03-30
Role of HSP60/HSP10 in Lung Cancer: Simple Biomarkers or Leading Actors?
Review Article
Alberto Fucarino 1 Alessandro Pitruzzella 1 , 2
Show affiliations
Received 2019-07-31, accepted for publication 2020-03-02, Published 2020-03-30

Cancers are one of the major challenges faced by modern medicine both because of their impact in terms of the amount of cases and of the ineffectiveness of therapies used today. A concrete support to the fight against them can be found in the analysis and understanding of the molecular mechanisms involving molecular chaperones. In particular, HSP60 and HSP10 seem to play an important role in carcinogenesis, supporting tumours in their proliferation, survival, and metastasis. Efforts must be directed toward finding ways to eliminate or block this “mistaken” chaperone. Therefore, the scientific community must develop therapeutic strategies that consider HSP60 and HSP10 as the possible target of an anti-tumoural treatment and not only as diagnostic biomarkers, since they contribute to the evolution of pre-cancerous respiratory pathologies in lung tumours. HSP60 acts at the mitochondrial, cytoplasmic, and extracellular levels in the development of cancer pathologies. The molecular mechanisms in which these chaperones are involved concern cell survival, the restoration of a condition of absence of replicative senescence, the promotion of pro-inflammatory environments, and an increase in the ability to form metastases. In this review, we will also present examples of interactions between HSP60 and HSP10 and different molecules and ways to exploit this knowledge in anticancer therapies for lung tumours. In order to improve not only chances for an earlier diagnosis but also treatments for patients suffering from this type of disease, chaperones must be considered as key agents in carcinogenesis and primary targets in therapeutics.


Copyright © 2020 Alberto Fucarino and Alessandro Pitruzzella. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Alberto Fucarino.Department of Biomedicine, Neuroscience and Advanced Diagnostics-University of Palermo, Palermo, Italy.fucaro1984@gmail.com


Alberto Fucarino,Alessandro Pitruzzella. Role of HSP60/HSP10 in Lung Cancer: Simple Biomarkers or Leading Actors?. Journal of Oncology ,Vol.2020(2020)



[1] F. Trapasso, P. Flavia, G. Marco. (2017). Fhit interaction with ferredoxin reductase triggers generation of reactive oxygen species and apoptosis of cancer cells. Journal of Biological Chemistry.292(34):14279. DOI: 10.3322/caac.21492.
[2] B. M. Gruber, J. Krzysztoń-Russjan, I. Bubko, E. L. Anuszewska. et al.(2010). Possible role of HSP60 in synergistic action of anthracyclines and sulindac in HeLa cells. Acta Poloniae Pharmaceutica.67(6):620-624. DOI: 10.3322/caac.21492.
[3] F. Cappello, B. Marianna, P. Antonio. (2002). Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology.70(2):83-88. DOI: 10.3322/caac.21492.
[4] U. Sarangi, K. S. Manish, V. V. A. Kanugovi. (2013). Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights.7(1):35-51. DOI: 10.3322/caac.21492.
[5] A. Pace, B. Giampaolo, L. Antonino. (2013). Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Current Pharmaceutical Design.19(15):2757-2764. DOI: 10.3322/caac.21492.
[6] T. Ito, R. Kawabe, Y. Kurasono. (1998). Expression of heat shock proteins in squamous cell carcinoma of the tongue: an immunohistochemical study. Journal of Oral Pathology & Medicine.27(1):18-22. DOI: 10.3322/caac.21492.
[7] Y. J. Hwang, L. Soon Pyo, K. Suk Young. (2009 Jun 30). Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Medical Journal.50(3):399-406. DOI: 10.3322/caac.21492.
[8] B. G. Childs, D. J. Baker, J. L. Kirkland, J. Campisi. et al.(2014). Senescence and apoptosis: duelling or complementary cell fates?. EMBO Reports.15:1139-1153. DOI: 10.3322/caac.21492.
[9] P. Piselli. (2000). Different expression of CD44, ICAM-1, and HSP60 on primary tumor and metastases of a human pancreatic carcinoma growing in scid mice. Anticancer Res.20(2A):825-831. DOI: 10.3322/caac.21492.
[10] J. Ma, B. B. Wang, X. Y. Ma, W. P. Deng. et al.(2018). Potential involvement of heat shock proteins in pancreatic-duodenal homeobox-1-mediated effects on the genesis of gastric cancer: a 2D gel-based proteomic study. World Journal of Gastroenterology.24(37):4263-4271. DOI: 10.3322/caac.21492.
[11] S. K. Calderwood, J. Gong. (2016). Heat shock proteins promote cancer: it's a protection racket. Trends in Biochemical Sciences.41(4):311-323. DOI: 10.3322/caac.21492.
[12] Q. Meng, B. X. Li, X. Xiao. (2018). Toward developing chemical modulators of Hsp60 as potential therapeutics. Frontiers in Molecular Biosciences.5:35. DOI: 10.3322/caac.21492.
[13] F. Mantovani, L. Collavin, G. Del Sal. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death & Differentiation.26(2):199-212. DOI: 10.3322/caac.21492.
[14] R. Ünver, F. Deveci, G. Kırkıl, S. Telo. et al.(2016). Serum heat shock protein levels and the relationship of heat shock proteins with various parameters in chronic obstructive pulmonary disease patients. Turkish Thoracic Journal.17(4):153-159. DOI: 10.3322/caac.21492.
[15] L. Shrestha, A. Bolaender, H. J. Patel, T. Taldone. et al.(2016). Heat shock protein (HSP) drug discovery and development: targeting heat shock proteins in disease. Current Topics in Medicinal Chemistry.16(25):2753-2764. DOI: 10.3322/caac.21492.
[16] F. Cappello, S. Antonino Di, D. Sabrina. (2006). Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer.107(10):2417-2424. DOI: 10.3322/caac.21492.
[17] F. Cappello, C. Gaetano, C. Claudia. (2011). Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One.6(11). DOI: 10.3322/caac.21492.
[18] M. Cohen-Sfady, M. Pevsner-Fischer, R. Margalit. (2009). Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced. Journal of Immunology.183:890-896. DOI: 10.3322/caac.21492.
[19] C. Sangiorgi, V. Davide, G. Isabella. (2017). HSP60 activity on human bronchial epithelial cells. International Journal of Immunopathology and Pharmacology.30(4):333-340. DOI: 10.3322/caac.21492.
[20] A. Litwiniec, A. Grzanka, A. Helmin-Basa, L. Gackowska. et al.(2010). Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. Journal of Cancer Research and Clinical Oncology.136(5):717-736. DOI: 10.3322/caac.21492.
[21] C. Zhao, H. Weili, J. F. Maria, E. P. Patrice. et al.(2014). Lysophosphatidic acid-induced IL-8 secretion involves MSK1 and MSK2 mediated activation of CREB1 in human fibroblast-like synoviocytes. Biochemical Pharmacology.90(1):62-72. DOI: 10.3322/caac.21492.
[22] C. Zhou, S. Hongwei, Z. Chen. (2018). Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis.9(2):161. DOI: 10.3322/caac.21492.
[23] F. Cappello, F. Rappa, S. David, R. Anzalone. et al.(2003). Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Research.23(2B):1325-1331. DOI: 10.3322/caac.21492.
[24] A. Glaessgen, J. Sara, L. Anna. (2008). Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS.116(10):888-895. DOI: 10.3322/caac.21492.
[25] J. Zhang, Z. Xingchun, C. Hulin. (2016). Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget.7(42):68976-68989. DOI: 10.3322/caac.21492.
[26] B. Johansson, R. P. Mohammad, C. Yin-Choy. (2006). Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heatshock protein 60 as a marker for prostate malignancy. Prostate.66(12):1235-1244. DOI: 10.3322/caac.21492.
[27] F. Cappello, M. Margherita, J. Abdo. (2019). Hsp60 as a novel target in ibd management: a prospect. Frontiers in Pharmacology.10(8). DOI: 10.3322/caac.21492.
[28] F. Cappello, G. Zummo. (2006). HSP60 expression during carcinogenesis: where is the pilot?. Pathology-Research and Practice.202:401-402. DOI: 10.3322/caac.21492.
[29] C. Hamelin, C. Emilie, P. Florence. (2011). Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. The FEBS Journal.278(24):4845-4859. DOI: 10.3322/caac.21492.
[30] F. Cappello, A. Di Stefano, S. E. D’Anna, C. F. Donner. et al.(2005 Oct). Immunopositivity of heat shock protein 60 as a biomarker of bronchial carcinogenesis. The Lancet Oncology.6(10):816. DOI: 10.3322/caac.21492.
[31] F. Rappa. (2012). HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Research.32:5139-5150. DOI: 10.3322/caac.21492.
[32] A. Osterloh, F. Geisinger, M. Piédavent, B. Fleischer. et al.(2009). Heat shock protein 60 (HSP60) stimulates neutrophil effector functions. Journal of Leukocyte Biology.86(2):423-434. DOI: 10.3322/caac.21492.
[33] F. Cappello, M. Everly Conway de, M. Lorenzo, Z. Giovanni. et al.(2008). Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biology & Therap.7:801-809. DOI: 10.3322/caac.21492.
[34] C. Campanella, B. Fabio, M. M. Anna. (2012). The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PloS one.7:7. DOI: 10.3322/caac.21492.
[35] S. Corrao, A. Rita, I. Melania Lo. (2014). Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biology.4(10). DOI: 10.3322/caac.21492.
[36] M. Gorska, M. G. Antonella, A. Z. Michal. (2013). Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One.8(8). DOI: 10.3322/caac.21492.
[37] B. K. Shin, W. Hong, Y. Anne Marie. (2003). Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. Journal of Biological Chemistry.278(9):7607-7616. DOI: 10.3322/caac.21492.
[38] E. Pace, F. Maria, S. Liboria. (2008). Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology.124:401-411. DOI: 10.3322/caac.21492.
[39] D. Margel, M. Pevsner-Fischer, J. Baniel, O. Yossepowitch. et al.(2011). Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. European Urology.59(1):113-119. DOI: 10.3322/caac.21492.
[40] A. J. Guimarães, F. Susana, P. Bruno. (2011). Agglutination of Histoplasma capsulatum by IgG monoclonal antibodies against Hsp60 impacts macrophage effector functions. Infect Immun.79(2):918-927. DOI: 10.3322/caac.21492.
[41] N. González. (2017). Update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget.8(11):18456-18485. DOI: 10.3322/caac.21492.
[42] K. Ha, F. Warren, C. Dong Soon. (2014). Histone deacetylase inhibitor treatment induces “BRCAness” and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget.5(14):5637-5650. DOI: 10.3322/caac.21492.
[43] G. Andocs, M. Nora, B. Lajos. (2015). Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress & Chaperones.20(1):37-46. DOI: 10.3322/caac.21492.
[44] M. Urushibara, Y. Kageyama, T. Akashi. (2007). HSP60 may predict good pathological response to neoadjuvant chemoradiotherapy in bladder cancer. Japanese Journal of Clinical Oncology.37(1):56-61. DOI: 10.3322/caac.21492.
[45] W. Pei, T. Katsuya, C .H. Sunny. (2016). Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regenerative Medicine.1. DOI: 10.3322/caac.21492.
[46] S. K. Calderwood, S. S. Mambula, P. J. Gray, J. R. Theriault. et al.(2007). Extracellular heat shock proteins in cell signaling. FEBS Letters.581(19):3689-3694. DOI: 10.3322/caac.21492.
[47] D. A. Beyene, J. N. Tammey, F. K. Norma. (2018). Differential expression of Annexin 2, SPINK1, and Hsp60 predict progression of prostate cancer through bifurcated WHO Gleason score categories in African American men. Prostate.78(11):801-811. DOI: 10.3322/caac.21492.
[48] H. Morton. (1998). Early pregnancy factor: an extracellular chaperonin 10 homologue. Immunology and Cell Biology.76(6):483-496. DOI: 10.3322/caac.21492.
[49] S. David. (2013). Hsp10: anatomic distribution, functions, and involvement in human disease. Frontiers in Bioscience.5:768-778. DOI: 10.3322/caac.21492.
[50] C. Castilla, C. Belén, M. C. José. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology.76(4):1017.e1-6. DOI: 10.3322/caac.21492.
[51] D. Hayoun, T. Kapp, M. Edri-Brami. (2012). HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS Journal.279(12):2083-2095. DOI: 10.3322/caac.21492.
[52] A. M. Czarnecka, C. Campanella, G. Zummo, F. Cappello. et al.(2006). Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biology & Therapy.5:714-720. DOI: 10.3322/caac.21492.
[53] S. Corrao, C. Claudia, A. Rita. (2010). Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sciences.86(5-6):145-152. DOI: 10.3322/caac.21492.
[54] M. Y. Lai, M. J. Hour, H. Wing-Cheung Leung, W. H. Yang. et al.(2007 Nov 14). Chaperones are the target in aloe-emodin-induced human lung nonsmall carcinoma H460 cell apoptosis. European Journal of Pharmacology.573(1–3):1-10. DOI: 10.3322/caac.21492.
[55] A. J. Macario, E. Conway de Macario. (2007). Molecular chaperones: multiple functions, pathologies and potential applications. Frontiers in Bioscience.1:2588-2600. DOI: 10.3322/caac.21492.
[56] C. Campanella, F. Bucchieri, N. M. Ardizzone. (2008). Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells. European Journal of Histochemistry.52(4):221-228. DOI: 10.3322/caac.21492.
[57] X. Fei, D. Yang, N. LaRonde-LeBlanc, G. H. Lorimer. et al.(2013). Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution. Proceedings of the National Academy of Sciences.110(32):E2958-E2966. DOI: 10.3322/caac.21492.
[58] J. Shi, M. Fu, C. Zhao, F. Zhou. et al.(2016). Characterization and function analysis of Hsp60 and Hsp10 under different acute stresses in black tiger shrimp,. Cell Stress Chaperones.21(2):295-312. DOI: 10.3322/caac.21492.
[59] A. Michils, R. Myriam, B. Valérie Zegers de. (2001). Increased expression of high but not low molecular weight heat shock proteins in resectable lung carcinoma. Lung Cancer.33:59-67. DOI: 10.3322/caac.21492.
[60] C. Caruso Bavisotto, N. Dragana, M. G. Antonella. (2017). The dissociation of theHsp60/pro-Caspase-3 complex by bis(pyridyl) oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells. Journal of Inorganic Biochemistry.170:8-16. DOI: 10.3322/caac.21492.
[61] A. Di Stefano, F. L. M. Ricciardolo, G. Caramori. (2017). Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. European Respiratory Journal.49(5):1602006. DOI: 10.3322/caac.21492.
[62] F. Cappello, M. G. Antonella, P. P. Antonio. (2014). Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opinion on Therapeutic Targets.18(2):185-208. DOI: 10.3322/caac.21492.
[63] J. Tian, X. Guo, X. M. Liu. (2013). Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovascular Research.98:391-401. DOI: 10.3322/caac.21492.
[64] Y. P. Tsai, M. H. Yang, C. H. Huang. (2009). Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis.30(6):1049-1057. DOI: 10.3322/caac.21492.
[65] R. Radi. (2013). Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Accounts of Chemical Research.46(2):550-559. DOI: 10.3322/caac.21492.
[66] I. M. Ghobrial, D. J. McCormick, S. H. Kaufmann. (2005). Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood.105(9):3722-3730. DOI: 10.3322/caac.21492.
[67] F. Cappello, M. Bellafiore, S. David, R. Anzalone. et al.(2003a). Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Letters.196(1):35-41. DOI: 10.3322/caac.21492.
[68] F. Pichiorri, P. Tiziana, S. Sung-Suk. (2008). Fhit tumor suppressor: guardian of the preneoplastic genome. Future Oncology.4(6):815-824. DOI: 10.3322/caac.21492.
[69] L. H. Lv, W. Yun-Le, L. Yan. (2012). Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. Journal of Biological Chemistry.287(19):15874-15885. DOI: 10.3322/caac.21492.
[70] B. Têtu, I. Popa, I. Bairati. (2008). Immunohistochemical analysis of possible chemoresistance markers identified by micro-arrays on serous ovarian carcinomas. Modern Pathology.21(8):1002-1010. DOI: 10.3322/caac.21492.
[71] C. Campanella, D’. A. Antonella, M. G. Antonella. (2016). The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget.7:20-67. DOI: 10.3322/caac.21492.
[72] H. Okumura, H. Ishii, F. Pichiorri, C. M. Croce. et al.(2009). Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Science.100(7):1145-1150. DOI: 10.3322/caac.21492.
[73] A. M. Merendino, B. Fabio, C. Claudia. (2010). Hsp60 is actively secreted by human tumor cells. PLoS One.5(2):e9247. DOI: 10.3322/caac.21492.
[74] T. G. Santos, V. R. Martins, G. N. M. Hajj. (2017). Unconventional secretion of heat shock proteins in cancer. International Journal of Molecular Sciences.18(5):946. DOI: 10.3322/caac.21492.
[75] D. K. Clare, H. R. Saibil. (2013). ATP-driven molecular chaperone machines. Biopolymers.99(11):846-859. DOI: 10.3322/caac.21492.
[76] E. Chapman, G. W. Farr, W. A. Fenton, S. M. Johnson. et al.(2008). Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Proceedings of the National Academy of Sciences.105(49):19205-19210. DOI: 10.3322/caac.21492.
[77] A. Marino Gammazza, C. Claudia, B. Rosario. (2017). Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Letters.385:75-86. DOI: 10.3322/caac.21492.
[78] C. Campanella, R. Francesca, S. Carmelo. (2015). Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer.121(18):3230-3239. DOI: 10.3322/caac.21492.
[79] S. Bagcchi. (2017). Lung cancer survival only increases by a small amount despite recent treatment advances. The Lancet Respiratory Medicine.5(3):169. DOI: 10.3322/caac.21492.
[80] T. Lebret, R. W. Watson, V. Molinié. (2003). Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer.98(5):970-977. DOI: 10.3322/caac.21492.
[81] X. Xu, W. Wang, W. Shao. (2011). Heat shock protein-60 expression was significantly correlated with the prognosis of lung adenocarcinoma. J Surg Oncol.104(6):598-603. DOI: 10.3322/caac.21492.
[82] S. Chatterjee, T. F. Burns. (2017). Targeting heat shock proteins in cancer: a promising therapeutic approach. International Journal of Molecular Sciences.18(9):1978. DOI: 10.3322/caac.21492.
[83] J. N. Chun, C. Boae, W. Kyung. (2010). Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS One.5(3). DOI: 10.3322/caac.21492.
[84] F Bray. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians.68:394-424. DOI: 10.3322/caac.21492.
[85] H. J. Yu, Y. H. Chang, C. C. Pan. (2013). Prognostic significance of heat shock proteins in urothelial carcinoma of the urinary bladder. Histopathology.62(5):788-798. DOI: 10.3322/caac.21492.
[86] S. Chen, A. M. Roseman, A. S. Hunter. (1994). Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature.371(6494):261-264. DOI: 10.3322/caac.21492.
[87] T. Druck, G. C. Douglas, P. Dongju. (2019). Fhit-Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death & Disease.10(3):147. DOI: 10.3322/caac.21492.
[88] P. B. Sigler, X. Zhaohui, S. R. Hays, G. B. Steven. et al.(1998). Structure and functionin GroEL-mediated protein folding. Annual Review of Biochemistry.67:581-608. DOI: 10.3322/caac.21492.
[89] E. Gaudio, F. Paduano, C. M. Croce, F. Trapasso. et al.(2016). The Fhit protein: an opportunity to overcome chemoresistance. Aging.8(11):3147-3150. DOI: 10.3322/caac.21492.
[90] J. Wu. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences.38(3):226-256. DOI: 10.3322/caac.21492.
浏览 16次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次