首页 » 文章 » 文章详细信息
International Journal of Agronomy Volume 2020 ,2020-03-31
Effect of Land Use on Organic Carbon Storage Potential of Soils with Contrasting Native Organic Matter Content
Research Article
Sabina Yeasmin 1 , 2 Eshara Jahan 1 , 2 Md. Ashik Molla 1 , 2 A. K. M. Mominul Islam 1 , 2 Md. Parvez Anwar 1 , 2 Md. Harun Or Rashid 1 Sirinapa Chungopast 3
Show affiliations
DOI:10.1155/2020/8042961
Received 2019-12-26, accepted for publication 2020-03-10, Published 2020-03-31
PDF
摘要

This study aimed to determine the impact of land use on organic carbon (OC) pools of soils with contrasting native organic matter (OM) content. Surface (0–15 cm) soils of four land uses (cropland, orchard, grassland, and fallow) were collected from four agroecological zones (AEZs) of Bangladesh with different OM content (AEZ-7: very low, −3: low, −9: medium, and −5: high). Bulk soils were physically fractionated into particulate and mineral associated OM (POM and MOM: >53 and <53 µm, respectively). Both bulk and fractionated soils were analyzed for OC and nitrogen (N). Among the land uses, undisturbed soils (grassland and fallow land) had significantly higher total OC (0.44–1.79%) than disturbed soils (orchard and cropland) (0.39–1.67%) in all AEZs. The distribution of OC and N in POM and MOM fractions was significantly different among land uses and also varied with native OM content. In all AEZs, cropland soils showed the lowest POM-C content (0.40–1.41%), whereas the orchard soils showed the highest values (0.71–1.91%). The MOM-C was highest (0.81–1.91%) in fallow land and lowest (0.53–1.51%) in orchard, and cropland had a moderate amount (0.70–1.61%). In croplands, distribution of a considerable amount of OC in the MOM pool was noticeable. These findings reveal that total OC in soils can be decreased with cultivation but does not inevitably indicate the loss of OC storage in the stable pool. Carbon storage potential of soils with both high- and low-native OM contents can be increased via proper land use and managements.

授权许可

Copyright © 2020 Sabina Yeasmin et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Sabina Yeasmin.Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh, bau.edu.bd;Agro Innovation Laboratory, Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh, bau.edu.bd.sabinayeasmin@bau.edu.bd

推荐引用方式

Sabina Yeasmin,Eshara Jahan,Md. Ashik Molla,A. K. M. Mominul Islam,Md. Parvez Anwar,Md. Harun Or Rashid,Sirinapa Chungopast. Effect of Land Use on Organic Carbon Storage Potential of Soils with Contrasting Native Organic Matter Content. International Journal of Agronomy ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. M. Bremner. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science.55(1):11-33. DOI: 10.1016/s0146-6380(02)00112-2.
[2] G. J. Bouyoucos. (1962). Hydrometer method improved for making particle size analyses of Soils1. Agronomy Journal.54(5):464-465. DOI: 10.1016/s0146-6380(02)00112-2.
[3] A. L. Page, R. H. Miller, D. R. Keeney. (1982). Methods Of Soil Analysis (Part 2). DOI: 10.1016/s0146-6380(02)00112-2.
[4] J. M. Oades. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Biological Processes and Soil Fertility.76:319-337. DOI: 10.1016/s0146-6380(02)00112-2.
[5] A. Walkley, I. A. Black. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science.37(1):29-38. DOI: 10.1016/s0146-6380(02)00112-2.
[6] Z. Luo, E. Wang, O. J. Sun. (2010). Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma.155(3-4):211-223. DOI: 10.1016/s0146-6380(02)00112-2.
[7] S. Yeasmin, B. Singh, C. T. Johnston, D. L. Sparks. et al.(2017). Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta.218:215-236. DOI: 10.1016/s0146-6380(02)00112-2.
[8] J. Álvaro-Fuentes, M. V. López, C. Cantero-Martinez, J. L. Arrúe. et al.(2008). Tillage effects on soil organic carbon fractions in mediterranean dryland agroecosystems. Soil Science Society of America Journal.72(2):541-547. DOI: 10.1016/s0146-6380(02)00112-2.
[9] A. Bhatia, P. K. Aggarwal, N. Jain, H. Pathak. et al.(2011). Greenhouse gas emission from rice-wheat growing areas in India: spatial analysis and up scaling. Greenhouse Gases: Science and Technology.2(2):115-125. DOI: 10.1016/s0146-6380(02)00112-2.
[10] E. A. Paul. (1984). Dynamics of organic matter in soils. Biological Processes and Soil Fertility.76:275-285. DOI: 10.1016/s0146-6380(02)00112-2.
[11] C. E. Stewart, K. Paustian, R. T. Conant, A. F. Plante. et al.(2007). Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry.86(1):19-31. DOI: 10.1016/s0146-6380(02)00112-2.
[12] J. Six, R. T. Conant, E. A. Paul, K. Paustian. et al.(2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil.241(2):155-176. DOI: 10.1016/s0146-6380(02)00112-2.
[13] M. L. Jackson. (1962). Soil Chemical Analysis:498. DOI: 10.1016/s0146-6380(02)00112-2.
[14] G. W. T. Wilson, C. W. Rice, M. C. Rillig, A. Springer. et al.(2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters.12(5):452-461. DOI: 10.1016/s0146-6380(02)00112-2.
[15] BARC (Bangladesh Agricultural Research Council). (1999). Land Degradation Situation of Bangladesh. DOI: 10.1016/s0146-6380(02)00112-2.
[16] C. A. Cambardella, E. T. Elliott. (1992). Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal.56(3):777-783. DOI: 10.1016/s0146-6380(02)00112-2.
[17] K. R. Tate, N. A. Scott, D. J. Ross, A. Parshotam. et al.(2000). Plant effects on soil carbon storage and turnover in a montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand. Soil Research.38(3):685-698. DOI: 10.1016/s0146-6380(02)00112-2.
[18] R. T. Conant, K. Paustian, E. T. Elliott. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications.11:343-355. DOI: 10.1016/s0146-6380(02)00112-2.
[19] W. M. Post, K. C. Kwon. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology.6(3):317-327. DOI: 10.1016/s0146-6380(02)00112-2.
[20] F. Yimer, S. Ledin, A. Abdelkadir. (2007). Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia. Forest Ecology and Management.242(2-3):337-342. DOI: 10.1016/s0146-6380(02)00112-2.
[21] C. D. Evans, C. Freeman, L. G. Cork. (2007). Evidence against recent climate induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophysical Research Letters.34(7):1-5. DOI: 10.1016/s0146-6380(02)00112-2.
[22] A. Golchin, H. Asgari. (2008). Land use effects on soil quality indicators in north-eastern Iran. Soil Research.46(1):27-36. DOI: 10.1016/s0146-6380(02)00112-2.
[23] J. Hassink. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil.191(1):77-87. DOI: 10.1016/s0146-6380(02)00112-2.
[24] C. A. Campbell, R. P. Zentner, K. E. Bowren, L. Townley-Smith. et al.(1991). Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Canadian Journal of Soil Science.71(3):377-387. DOI: 10.1016/s0146-6380(02)00112-2.
[25] K. Paustian, H. P. Collins, E. A. Paul. (1997). Management controls on soil carbon. Soil Organic Matter in Temperate Agroecosystems:15-49. DOI: 10.1016/s0146-6380(02)00112-2.
[26] I. Celik. (2005). Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research.83(2):270-277. DOI: 10.1016/s0146-6380(02)00112-2.
[27] X. Fang, Z. Xue, B. Li, S. An. et al.(2012). Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena.88(1):6-13. DOI: 10.1016/s0146-6380(02)00112-2.
[28] A. E. Lugo, S. Brown. (1993). Management of tropical soils as sinks or sources of atmospheric carbon. Plant and Soil.149(1):27-41. DOI: 10.1016/s0146-6380(02)00112-2.
[29] Z. Xie, J. Zhu, G. Liu. (2007). Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology.13(9):1989-2007. DOI: 10.1016/s0146-6380(02)00112-2.
[30] R. Kiem, I. Kögel-Knabner. (2002). Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 m. Organic Geochemistry.33(12):1699-1713. DOI: 10.1016/s0146-6380(02)00112-2.
[31] G. X. Pan, L. Q. Li, L. S. Wu, X. H. Zhang. et al.(2003). Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology.10(3):79-92. DOI: 10.1016/s0146-6380(02)00112-2.
[32] L. Chen, J. Gong, B. Fu, Z. Huang. et al.(2007). Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research.22(4):641-648. DOI: 10.1016/s0146-6380(02)00112-2.
[33] N. Islam, S. Hossen, A. Baten. (2016). Soil carbon and nitrogen dynamics in agricultural soils of Mymensingh, Bangladesh. International Journal of Agricultural and Biosystems Engineering.1:1-8. DOI: 10.1016/s0146-6380(02)00112-2.
[34] A. Don, J. Schumacher, A. Freibauer. (2011). Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Global Change Biology.17(4):1658-1670. DOI: 10.1016/s0146-6380(02)00112-2.
[35] W. E. Larson, C. E. Clapp, W. H. Pierre, Y. B. Morachan. et al.(1972). Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus, and Sulfur1. Agronomy Journal.64(2):204-209. DOI: 10.1016/s0146-6380(02)00112-2.
[36] W. B. McGill. (1996). Review and classification of ten soil organic matter models. Evaluation Of Soil Organic Matter Models:111-132. DOI: 10.1016/s0146-6380(02)00112-2.
[37] I. Ismail, R. L. Blevins, W. W. Frye. (1994). Long-term No-tillage effects on soil properties and continuous corn yields. Soil Science Society of America Journal.58(1):193-198. DOI: 10.1016/s0146-6380(02)00112-2.
[38] E. Roose, B. Barthès. (2001). Organic matter management for soil conservation and productivity restoration in Africa: a contribution from francophone research. Nutrient Cycling in Agroecosystems.61:159-170. DOI: 10.1016/s0146-6380(02)00112-2.
[39] L. B. Guo, R. M. Gifford. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology.8(4):345-360. DOI: 10.1016/s0146-6380(02)00112-2.
[40] J. Leifeld, I. Kögel-Knabner. (2005). Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma.124(1-2):143-155. DOI: 10.1016/s0146-6380(02)00112-2.
[41] K. Eusterhues, C. Rumpel, M. Kleber, I. Kögel-Knabner. et al.(2003). Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry.34(12):1591-1600. DOI: 10.1016/s0146-6380(02)00112-2.
[42] W. T. Baisden, R. Amundson, A. C. Cook, D. L. Brenner. et al.(2002). Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochemical Cycle.16:11-17. DOI: 10.1016/s0146-6380(02)00112-2.
[43] X. Fu, M. Shao, X. Wei, R. Horton. et al.(2010). Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma.155(1-2):31-35. DOI: 10.1016/s0146-6380(02)00112-2.
[44] Z. Jin, Y. Dong, Y. Wang. (2014). Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China. Science of The Total Environment.485-486:615-623. DOI: 10.1016/s0146-6380(02)00112-2.
[45] E. Jones, B. Singh. (2014). Organo-mineral interactions in contrasting soils under natural vegetation. Frontiers in Environmental Science.2(2):1-15. DOI: 10.1016/s0146-6380(02)00112-2.
[46] A. L. Wright, F. Dou, F. M. Hons. (2007). Crop species and tillage effects on carbon sequestration in subsurface soil. Soil Science.172(2):124-131. DOI: 10.1016/s0146-6380(02)00112-2.
[47] X. Cheng, M. Huang, M. Shao. (2007). Vertical distribution of representative plantation’s fine root in wind-water erosion crisscross region, Shenmu. Acta Botany Boreal Occident Sinica.27:321-327. DOI: 10.1016/s0146-6380(02)00112-2.
[48] S. Jagadamma, R. Lal. (2010). Integrating physical and chemical methods for isolating stable soil organic carbon. Geoderma.158(3-4):322-330. DOI: 10.1016/s0146-6380(02)00112-2.
[49] T. B. Bruun, B. Elberling, A. Neergaard, J. Magid. et al.(2015). Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development.26(3):272-283. DOI: 10.1016/s0146-6380(02)00112-2.
[50] B. Majumder, B. Mandal, P. K. Bandyopadhyay. (2008). Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice-berseem agroecosystem. Biology and Fertility of Soils.44(3):451-461. DOI: 10.1016/s0146-6380(02)00112-2.
文献评价指标
浏览 25次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次