首页 » 文章 » 文章详细信息
BioMed Research International Volume 2020 ,2020-04-01
Identification of Potential Biomarkers for Thyroid Cancer Using Bioinformatics Strategy: A Study Based on GEO Datasets
Research Article
Yujie Shen 1 Shikun Dong 1 Jinhui Liu 2 Liqing Zhang 1 Jiacheng Zhang 1 Han Zhou 1 Weida Dong 1
Show affiliations
Received 2019-08-06, accepted for publication 2020-03-05, Published 2020-04-01

Background. The molecular mechanisms and genetic markers of thyroid cancer are unclear. In this study, we used bioinformatics to screen for key genes and pathways associated with thyroid cancer development and to reveal its potential molecular mechanisms. Methods. The GSE3467, GSE3678, GSE33630, and GSE53157 expression profiles downloaded from the Gene Expression Omnibus database (GEO) contained a total of 164 tissue samples (64 normal thyroid tissue samples and 100 thyroid cancer samples). The four datasets were integrated and analyzed by the RobustRankAggreg (RRA) method to obtain differentially expressed genes (DEGs). Using these DEGs, we performed gene ontology (GO) functional annotation, pathway analysis, protein-protein interaction (PPI) analysis and survival analysis. Then, CMap was used to identify the candidate small molecules that might reverse thyroid cancer gene expression. Results. By integrating the four datasets, 330 DEGs, including 154 upregulated and 176 downregulated genes, were identified. GO analysis showed that the upregulated genes were mainly involved in extracellular region, extracellular exosome, and heparin binding. The downregulated genes were mainly concentrated in thyroid hormone generation and proteinaceous extracellular matrix. Pathway analysis showed that the upregulated DEGs were mainly attached to ECM-receptor interaction, p53 signaling pathway, and TGF-beta signaling pathway. Downregulation of DEGs was mainly involved in tyrosine metabolism, mineral absorption, and thyroxine biosynthesis. Among the top 30 hub genes obtained in PPI network, the expression levels of FN1, NMU, CHRDL1, GNAI1, ITGA2, GNA14 and AVPR1A were associated with the prognosis of thyroid cancer. Finally, four small molecules that could reverse the gene expression induced by thyroid cancer, namely ikarugamycin, adrenosterone, hexamethonium bromide and clofazimine, were obtained in the CMap database. Conclusion. The identification of the key genes and pathways enhances the understanding of the molecular mechanisms for thyroid cancer. In addition, these key genes may be potential therapeutic targets and biomarkers for the treatment of thyroid cancer.


Copyright © 2020 Yujie Shen et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Weida Dong.Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China, njmu.edu.cn.weidadong2649@126.com


Yujie Shen,Shikun Dong,Jinhui Liu,Liqing Zhang,Jiacheng Zhang,Han Zhou,Weida Dong. Identification of Potential Biomarkers for Thyroid Cancer Using Bioinformatics Strategy: A Study Based on GEO Datasets. BioMed Research International ,Vol.2020(2020)



[1] C. Cyr-Depauw, J. J. Northey, S. Tabaries, M. G. Annis. et al.(2016). Chordin-like 1 suppresses bone morphogenetic protein 4-induced breast Cancer cell migration and invasion. Molecular and Cellular Biology.36(10):1509-1525. DOI: 10.1016/j.ajpath.2014.04.011.
[2] G. Song, K. Liu, X. Yang, B. Mu. et al.(2017). SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB. Oncotarget.8(11):17771-17784. DOI: 10.1016/j.ajpath.2014.04.011.
[3] S. Garczyk, N. Klotz, S. Szczepanski, B. Denecke. et al.(2017). Oncogenic features of neuromedin U in breast cancer are associated with NMUR2 expression involving crosstalk with members of the WNT signaling pathway. Oncotarget.8(22):36246-36265. DOI: 10.1016/j.ajpath.2014.04.011.
[4] T. W. Hunt, T. A. Fields, P. J. Casey, E. G. Peralta. et al.(1996). RGS10 is a selective activator of G alpha i GTPase activity. Nature.383(6596):175-177. DOI: 10.1016/j.ajpath.2014.04.011.
[5] P. J. Thul, C. Lindskog. (2018). The human protein atlas: a spatial map of the human proteome. Protein Science.27(1):233-244. DOI: 10.1016/j.ajpath.2014.04.011.
[6] A. Musa, L. S. Ghoraie, S. D. Zhang, G. Glazko. et al.(2018). A review of connectivity map and computational approaches in pharmacogenomics. Briefings in Bioinformatics.19(3):506-523. DOI: 10.1016/j.ajpath.2014.04.011.
[7] I. Y. Kuo, C. C. Wu, J. M. Chang, Y. L. Huang. et al.(2014). Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. International Journal of Cancer.135(3):563-573. DOI: 10.1016/j.ajpath.2014.04.011.
[8] Y. F. Pei, Y. J. Zhang, Y. Lei, D. W. Wu. et al.(2017). Hypermethylation of the CHRDL1 promoter induces proliferation and metastasis by activating Akt and Erk in gastric cancer. Oncotarget.8(14):23155-23166. DOI: 10.1016/j.ajpath.2014.04.011.
[9] V. G. Martinez, S. O'Neill, J. Salimu, S. Breslin. et al.(2017). Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology.6(12, article e1362530). DOI: 10.1016/j.ajpath.2014.04.011.
[10] G. Chernaya, N. Mikhno, T. Khabalova, S. Svyatchenko. et al.(2018). The expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation. Surgical Oncology.27(4):702-708. DOI: 10.1016/j.ajpath.2014.04.011.
[11] L. Chen, D. Lu, K. Sun, Y. Xu. et al.(2019). Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene.692:119-125. DOI: 10.1016/j.ajpath.2014.04.011.
[12] Y. Liu, M. Xue, S. Du, W. Feng. et al.(2019). Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nature Communications.10(1):1637. DOI: 10.1016/j.ajpath.2014.04.011.
[13] Z. Tang, C. Li, B. Kang, G. Gao. et al.(2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research.45(W1):W98-W102. DOI: 10.1016/j.ajpath.2014.04.011.
[14] Y. Attieh, A. G. Clark. (2017). Cancer-associated fibroblasts lead tumor invasion through integrin-beta3-dependent fibronectin assembly. .216:3509-3520. DOI: 10.1016/j.ajpath.2014.04.011.
[15] L. Goedert, J. R. Plaça, C. S. Fuziwara, M. C. R. Machado. et al.(2017). Identification of Long Noncoding RNAs Deregulated in Papillary Thyroid Cancer and Correlated with BRAF Mutation by Bioinformatics Integrative Analysis. Scientific Reports.7(1):1662. DOI: 10.1016/j.ajpath.2014.04.011.
[16] Q. Yang, M. Ji, H. Guan, B. Shi. et al.(2013). Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. The Journal of Clinical Endocrinology and Metabolism.98(12):E1909-E1917. DOI: 10.1016/j.ajpath.2014.04.011.
[17] L. Brooker, M. K. Parr, A. Cawley, U. Flenker. et al.(2009). Development of criteria for the detection of adrenosterone administration by gas chromatography-mass spectrometry and gas chromatography-combustion-isotope ratio mass spectrometry for doping control. Drug Testing and Analysis.1(11-12):587-595. DOI: 10.1016/j.ajpath.2014.04.011.
[18] Y. H. Lim, A. Bacchiocchi, J. Qiu, R. Straub. et al.(2016). _GNA14_ Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation. American Journal of Human Genetics.99(2):443-450. DOI: 10.1016/j.ajpath.2014.04.011.
[19] Z. Yang, Z. Yuan, Y. Fan, X. Deng. et al.(2013). Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Molecular Medicine Reports.8(5):1353-1358. DOI: 10.1016/j.ajpath.2014.04.011.
[20] R. Levin, U. Heresco-Levy, R. Bachner-Melman, S. Israel. et al.(2009). Association between arginine vasopressin 1a receptor (AVPR1a) promoter region polymorphisms and prepulse inhibition. Psychoneuroendocrinology.34(6):901-908. DOI: 10.1016/j.ajpath.2014.04.011.
[21] W. Qi, L. Sun, N. Liu, S. Zhao. et al.(2018). Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Molecular Medicine Reports.18(4):3599-3610. DOI: 10.1016/j.ajpath.2014.04.011.
[22] G. Dom, M. Tarabichi, K. Unger, G. Thomas. et al.(2012). A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. British Journal of Cancer.107(6):994-1000. DOI: 10.1016/j.ajpath.2014.04.011.
[23] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund. et al.(2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research.43(D1):D447-D452. DOI: 10.1016/j.ajpath.2014.04.011.
[24] P. Jiang, X. S. Liu. (2015). Big data mining yields novel insights on cancer. Nature Genetics.47(2):103-104. DOI: 10.1016/j.ajpath.2014.04.011.
[25] D. Hu, D. Ansari, Q. Zhou, A. Sasor. et al.(2019). Stromal fibronectin expression in patients with resected pancreatic ductal adenocarcinoma. World Journal of Surgical Oncology.17(1):29. DOI: 10.1016/j.ajpath.2014.04.011.
[26] T. Y. Lin, F. J. Wu, C. L. Chang, Z. Li. et al.(2016). NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling. Oncotarget.7(9):10228-10242. DOI: 10.1016/j.ajpath.2014.04.011.
[27] H. Teranishi, M. Hayashi, R. Higa, K. Mori. et al.(2018). Role of neuromedin U in accelerating of non-alcoholic steatohepatitis in mice. Peptides.99:134-141. DOI: 10.1016/j.ajpath.2014.04.011.
[28] Y. Zhou, C. Shu, Y. Huang. (2019). Fibronectin Promotes Cervical Cancer Tumorigenesis through Activating FAK Signaling Pathway. Journal of Cellular Biochemistry.120(7):10988-10997. DOI: 10.1016/j.ajpath.2014.04.011.
[29] R. Huang, X. Liao, Q. Li. (2018). Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. OncoTargets and Therapy.11:163-173. DOI: 10.1016/j.ajpath.2014.04.011.
[30] M. Soundararajan, F. S. Willard, A. J. Kimple, A. P. Turnbull. et al.(2008). Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proceedings of the National Academy of Sciences.105(17):6457-6462. DOI: 10.1016/j.ajpath.2014.04.011.
[31] B. R. Roman, L. G. Morris, L. Davies. (2017). The thyroid cancer epidemic, 2017 perspective. Current Opinion in Endocrinology, Diabetes, and Obesity.24(5):332-336. DOI: 10.1016/j.ajpath.2014.04.011.
[32] H. He, K. Jazdzewski, W. Li, S. Liyanarachchi. et al.(2005). The role of microRNA genes in papillary thyroid carcinoma. Proceedings of the National Academy of Sciences.102(52):19075-19080. DOI: 10.1016/j.ajpath.2014.04.011.
[33] X. Gao, Y. Chen, M. Chen, S. Wang. et al.(2018). Identification of key candidate genes and biological pathways in bladder cancer. PeerJ.6, article e6036. DOI: 10.1016/j.ajpath.2014.04.011.
[34] S. You, L. Gao. (2018). Identification of NMU as a potential gene conferring alectinib resistance in non-small cell lung cancer based on bioinformatics analyses. Gene.678:137-142. DOI: 10.1016/j.ajpath.2014.04.011.
[35] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell. et al.(2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science.313(5795):1929-1935. DOI: 10.1016/j.ajpath.2014.04.011.
[36] J. M. Pita, A. Banito, B. M. Cavaco, V. Leite. et al.(2009). Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. British Journal of Cancer.101(10):1782-1791. DOI: 10.1016/j.ajpath.2014.04.011.
[37] W. L. Gao, S. Q. Zhang, H. Zhang, B. Wan. et al.(2013). Chordin-like protein 1 promotes neuronal differentiation by inhibiting bone morphogenetic protein-4 in neural stem cells. Molecular Medicine Reports.7(4):1143-1148. DOI: 10.1016/j.ajpath.2014.04.011.
[38] L. D. Scott, A. W. Kay, M. M. O'Hare, J. A. Simpson. et al.(1950). Hexamethonium bromide in duodenal ulcer. British Medical Journal.2(4695):1470-1472. DOI: 10.1016/j.ajpath.2014.04.011.
[39] H. Hardin, Z. Guo, W. Shan, C. Montemayor-Garcia. et al.(2014). The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. The American Journal of Pathology.184(8):2342-2354. DOI: 10.1016/j.ajpath.2014.04.011.
[40] Y. T. Jesi, A. V. Smrcka. (2018). Activated heterotrimeric G protein subunits inhibit rap-dependent cell adhesion and promote cell migration. Journal of Biological Chemistry.293(5):1570-1578. DOI: 10.1016/j.ajpath.2014.04.011.
[41] M. J. Vazquez-Mellado, V. Monjaras-Embriz, L. Rocha-Zavaleta. (2017). Erythropoietin, stem cell factor, and Cancer cell migration. Vitamins and Hormones.105:273-296. DOI: 10.1016/j.ajpath.2014.04.011.
[42] W. A. Mackey, G. B. Shaw. (1951). Oral hexamethonium bromide in essential hypertension. British Medical Journal.2(4726):259-265. DOI: 10.1016/j.ajpath.2014.04.011.
浏览 18次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次