首页 » 文章 » 文章详细信息
BioMed Research International Volume 2020 ,2020-04-02
Noncoding RNAs as Biomarkers for Acute Coronary Syndrome
Review Article
Lijie Wang 1 Yuanzhe Jin 1
Show affiliations
DOI:10.1155/2020/3298696
Received 2019-12-01, accepted for publication 2020-03-24, Published 2020-04-02
PDF
摘要

Acute coronary syndrome (ACS), consisting of acute myocardial infarction and unstable angina, is the most dangerous and fatal form of coronary heart disease. Acute coronary syndrome has sudden onset and rapid development, which may lead to malignant life-threatening conditions at any time. Therefore, early detection and diagnosis are critical for patients with ACS. Recent studies have found that noncoding RNA is of great significance in the diagnosis and treatment of cardiovascular diseases. In this review, we summarized recent data on circulating noncoding RNAs (including microRNA, long noncoding RNA, and circular RNA) as diagnostic and prognostic markers in ACS including acute myocardial infarction and unstable angina. Specifically, microRNAs (miRNAs) as diagnostic markers are divided into three types: miRNAs of increased expression in ACS, miRNAs of decreased expression in ACS, and miRNAs of contradictory expression in ACS. Moreover, we described these miRNAs of increased expression in ACS based on miRNAs family. This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice.

授权许可

Copyright © 2020 Lijie Wang and Yuanzhe Jin. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yuanzhe Jin.Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China, cmu.edu.cn.yzjin@cmu.edu.cn

推荐引用方式

Lijie Wang,Yuanzhe Jin. Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BioMed Research International ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Zhang, Y. J. Liu, T. Liu, H. Zhang. et al.(2016). Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. European Review for Medical and Pharmacological Sciences.20. DOI: 10.1161/CIR.0000000000000558.
[2] J. S. Berger, L. Elliott, D. Gallup, M. Roe. et al.(2009). Sex differences in mortality following acute coronary syndromes. JAMA.302(8):874-882. DOI: 10.1161/CIR.0000000000000558.
[3] J. Finsterer, C. Stollberger, W. Krugluger. (2007). Cardiac and noncardiac, particularly neuromuscular, disease with troponin-T positivity. The Netherlands Journal of Medicine.65. DOI: 10.1161/CIR.0000000000000558.
[4] A. Maciejak, M. Kiliszek, G. Opolski, A. Segiet. et al.(2016). miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Molecular Medicine Reports.14(3):2867-2875. DOI: 10.1161/CIR.0000000000000558.
[5] Y. Wang, W. Chang, Y. Zhang, L. Zhang. et al.(2019). Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. Journal of Cellular Physiology.234(4):4778-4786. DOI: 10.1161/CIR.0000000000000558.
[6] J. Ren, J. Zhang, N. Xu, G. Han. et al.(2013). Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One.8(12, article e80738). DOI: 10.1161/CIR.0000000000000558.
[7] N. A. Abbas, R. I. John, M. C. Webb, M. E. Kempson. et al.(2005). Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clinical Chemistry.51(11):2059-2066. DOI: 10.1161/CIR.0000000000000558.
[8] H. Røsjø, M. Varpula, T.-A. Hagve, S. Karlsson. et al.(2011). Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Medicine.37(1):77-85. DOI: 10.1161/CIR.0000000000000558.
[9] F. He, P. Lv, X. Zhao, X. Wang. et al.(2014). Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Molecular and Cellular Biochemistry.394(1-2):137-144. DOI: 10.1161/CIR.0000000000000558.
[10] L. S. Niculescu, N. Simionescu, G. M. Sanda, M. G. Carnuta. et al.(2015). miR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS One.10(10, article e0140958). DOI: 10.1161/CIR.0000000000000558.
[11] Y. Zhang, J. Cheng, F. Chen, C. Wu. et al.(2017). Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Bioscience Reports.37(2). DOI: 10.1161/CIR.0000000000000558.
[12] H. Zhai, X. M. Li, F. Liu, B. D. Chen. et al.(2017). Expression pattern of genome-scale long noncoding RNA following acute myocardial infarction in Chinese Uyghur patients. Oncotarget.8(19):31449-31464. DOI: 10.1161/CIR.0000000000000558.
[13] Y. Lu, X. Meng, L. Wang, X. Wang. et al.(2017). Analysis of long non-coding RNA expression profiles identifies functional lncRNAs associated with the progression of acute coronary syndromes. Experimental and Therapeutic Medicine.15. DOI: 10.1161/CIR.0000000000000558.
[14] Y. Yan, B. Zhang, N. Liu, C. Qi. et al.(2016). Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Research International.2016-7. DOI: 10.1161/CIR.0000000000000558.
[15] L. Gao, Y. Liu, S. Guo, R. Yao. et al.(2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry.44(4):1497-1508. DOI: 10.1161/CIR.0000000000000558.
[16] W. Poller, S. Dimmeler, S. Heymans, T. Zeller. et al.(2018). Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. European Heart Journal.39(29):2704-2716. DOI: 10.1161/CIR.0000000000000558.
[17] F. Olivieri, R. Antonicelli, M. Lorenzi, Y. D'Alessandra. et al.(2013). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology.167(2):531-536. DOI: 10.1161/CIR.0000000000000558.
[18] X. Liu, Z. Fan, T. Zhao, W. Cao. et al.(2015). Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population. Experimental Gerontology.72:230-238. DOI: 10.1161/CIR.0000000000000558.
[19] C. Templin, J. Volkmann, M. Y. Emmert, P. Mocharla. et al.(2017). Increased proangiogenic activity of mobilized CD34+Progenitor cells of patients with acute ST-segment-elevation myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology.37(2):341-349. DOI: 10.1161/CIR.0000000000000558.
[20] F. Darabi, M. Aghaei, A. Movahedian, A. Elahifar. et al.(2017). Association of serum microRNA-21 levels with visfatin, inflammation, and acute coronary syndromes. Heart and Vessels.32(5):549-557. DOI: 10.1161/CIR.0000000000000558.
[21] F. Wang, G. Long, C. Zhao, H. Li. et al.(2014). Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One.9(9, article e105734). DOI: 10.1161/CIR.0000000000000558.
[22] C. Li, Z. Fang, T. Jiang, Q. Zhang. et al.(2013). Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Medical Genomics.6(1). DOI: 10.1161/CIR.0000000000000558.
[23] F. Darabi, M. Aghaei, A. Movahedian, A. Pourmoghadas. et al.(2016). The role of serum levels of microRNA-21 and matrix metalloproteinase-9 in patients with acute coronary syndrome. Molecular and Cellular Biochemistry.422(1-2):51-60. DOI: 10.1161/CIR.0000000000000558.
[24] S. Huang, M. Chen, L. Li, M.’. He. et al.(2014). Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circulation: Cardiovascular Genetics.7(2):189-198. DOI: 10.1161/CIR.0000000000000558.
[25] M. Vausort, A. Salgado-Somoza, L. Zhang, P. Leszek. et al.(2016). Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. Journal of the American College of Cardiology.68(11):1247-1248. DOI: 10.1161/CIR.0000000000000558.
[26] A. Salgado-Somoza, L. Zhang, M. Vausort, Y. Devaux. et al.(2017). The circular RNA MICRA for risk stratification after myocardial infarction. IJC Heart & Vasculature.17:33-36. DOI: 10.1161/CIR.0000000000000558.
[27] Z. Zhong, J. Hou, Q. Zhang, B. Li. et al.(2018). Differential expression of circulating long non-coding RNAs in patients with acute myocardial infarction. Medicine.97(51, article e13066). DOI: 10.1161/CIR.0000000000000558.
[28] W. Zheng, Y. Di, Y. Liu, G. Huang. et al.(2013). Development and application of a novel reverse transcription real-time PCR method for miR-499 quantification. Clinical Biochemistry.46(15):1566-1571. DOI: 10.1161/CIR.0000000000000558.
[29] Y. D'Alessandra, P. Devanna, F. Limana, S. Straino. et al.(2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction,. European Heart Journal.31(22):2765-2773. DOI: 10.1161/CIR.0000000000000558.
[30] C. Widera, S. K. Gupta, J. M. Lorenzen, C. Bang. et al.(2011). Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology.51(5):872-875. DOI: 10.1161/CIR.0000000000000558.
[31] S. M. Shalaby, A. S. El-Shal, A. Shoukry, M. H. Khedr. et al.(2016). Serum miRNA-499 and miRNA-210: a potential role in early diagnosis of acute coronary syndrome. IUBMB Life.68(8):673-682. DOI: 10.1161/CIR.0000000000000558.
[32] Y. Q. Li, M. F. Zhang, H. Y. Wen, C. L. Hu. et al.(2013). Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics.68(1):75-80. DOI: 10.1161/CIR.0000000000000558.
[33] J. Zhong, Y. He, W. Chen, X. Shui. et al.(2014). Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction. International Journal of Molecular Sciences.15(11):20355-20364. DOI: 10.1161/CIR.0000000000000558.
[34] J. Gacoń, R. Badacz, E. Stępień, I. Karch. et al.(2017). Diagnostic and prognostic micro-RNAs in ischaemic stroke due to carotid artery stenosis and in acute coronary syndrome: a four-year prospective study. Kardiologia Polska.76:362-369. DOI: 10.1161/CIR.0000000000000558.
[35] Y. Jin, C. J. Yang, X. Xu, J. N. Cao. et al.(2015). miR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF. Molecular and Cellular Biochemistry.402(1-2):111-122. DOI: 10.1161/CIR.0000000000000558.
[36] G. F. Zhu, L. X. Yang, R. W. Guo, H. Liu. et al.(2014). microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coronary Artery Disease.25(4):304-310. DOI: 10.1161/CIR.0000000000000558.
[37] M. Karakas, C. Schulte, S. Appelbaum, F. Ojeda. et al.(2016). Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. European Heart Journal.38. DOI: 10.1161/CIR.0000000000000558.
[38] C. Schulte, S. Molz, S. Appelbaum, M. Karakas. et al.(2015). miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One.10(12, article e0145930). DOI: 10.1161/CIR.0000000000000558.
[39] T. Adachi, M. Nakanishi, Y. Otsuka, K. Nishimura. et al.(2010). Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clinical Chemistry.56(7):1183-1185. DOI: 10.1161/CIR.0000000000000558.
[40] K. Jia, P. Shi, X. Han, T. Chen. et al.(2016). Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Molecular Medicine Reports.14(1):184-194. DOI: 10.1161/CIR.0000000000000558.
[41] J. Zhang, C. Gao, M. Meng, H. Tang. et al.(2016). Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomolecules & Therapeutics.24(1):19-24. DOI: 10.1161/CIR.0000000000000558.
[42] G. Long, F. Wang, Q. Duan, S. Yang. et al.(2012). Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS One.7(12, article e50926). DOI: 10.1161/CIR.0000000000000558.
[43] Y.-M. Dong, X.-X. Liu, G.-Q. Wei, Y.-N. da. et al.(2014). Prediction of long-term outcome after acute myocardial infarction using circulating miR-145. Scandinavian Journal of Clinical and Laboratory Investigation.75(1):85-91. DOI: 10.1161/CIR.0000000000000558.
[44] U. Eryilmaz, C. Akgullu, N. Beser, O. Yildiz. et al.(2015). Circulating microRNAs in patients with ST-elevation myocardial infarction. The Anatolian Journal of Cardiology.16(6):392-396. DOI: 10.1161/CIR.0000000000000558.
[45] M. Vausort, D. R. Wagner, Y. Devaux. (2014). Long noncoding RNAs in patients with acute myocardial infarction,. Circulation Research.115(7):668-677. DOI: 10.1161/CIR.0000000000000558.
[46] Y. Devaux, M. Mueller, P. Haaf, E. Goretti. et al.(2015). Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. Journal of Internal Medicine.277(2):260-271. DOI: 10.1161/CIR.0000000000000558.
[47] M. S. Parahuleva, G. Euler, A. Mardini, B. Parviz. et al.(2017). Identification of microRNAs as potential cellular monocytic biomarkers in the early phase of myocardial infarction: a pilot study. Scientific Reports.7(1):15974. DOI: 10.1161/CIR.0000000000000558.
[48] Y. Wang, J. Huang, T. Yang. (2015). Circulating miR-214 level and its correlation with the extent of coronary lesion in patients with acute myocardial infarction. Zhong Nan Da Xue Xue Bao: Yi Xue Ban.40. DOI: 10.1161/CIR.0000000000000558.
[49] A. Wronska, I. Kurkowska-Jastrzebska, G. Santulli. (2015). Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiologica.213(1):60-83. DOI: 10.1161/CIR.0000000000000558.
[50] M. I. F. J. Oerlemans, A. Mosterd, M. S. Dekker, E. A. de Vrey. et al.(2012). Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Molecular Medicine.4(11):1176-1185. DOI: 10.1161/CIR.0000000000000558.
[51] B. Rizzacasa, E. Morini, R. Mango, C. Vancheri. et al.(2019). miR-423 is differentially expressed in patients with stable and unstable coronary artery disease: a pilot study. PLoS One.14(5, article e0216363). DOI: 10.1161/CIR.0000000000000558.
[52] O. Gidlof, J. G. Smith, K. Miyazu, P. Gilje. et al.(2013). Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovascular Disorders.13(1). DOI: 10.1161/CIR.0000000000000558.
[53] E. Nabiałek, W. Wańha, D. Kula, T. Jadczyk. et al.(2013). Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiologica.61. DOI: 10.1161/CIR.0000000000000558.
[54] G. Liu, X. Niu, X. Meng, Z. Zhang. et al.(2018). Sensitive miRNA markers for the detection and management of NSTEMI acute myocardial infarction patients. Journal of Thoracic Disease.10(6):3206-3215. DOI: 10.1161/CIR.0000000000000558.
[55] L. Li, S. Li, M. Wu, C. Chi. et al.(2018). Early diagnostic value of circulating microRNAs in patients with suspected acute myocardial infarction. Journal of Cellular Physiology.234(8):13649-13658. DOI: 10.1161/CIR.0000000000000558.
[56] L. Li, L. Wang, H. Li, X. Han. et al.(2018). Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis.275:359-367. DOI: 10.1161/CIR.0000000000000558.
[57] L. Li, Y. Cong, X. Gao, Y. Wang. et al.(2017). Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction. Oncotarget.8(51):88613-88621. DOI: 10.1161/CIR.0000000000000558.
[58] K. J. Wang, X. Zhao, Y. Z. Liu, Q. T. Zeng. et al.(2016). Circulating miR-19b-3p, miR-134-5p and miR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction. Cellular Physiology and Biochemistry.38(3):1015-1029. DOI: 10.1161/CIR.0000000000000558.
[59] Y. Zhang, L. Sun, L. Xuan, Z. Pan. et al.(2016). Reciprocal Changes of Circulating Long Non-Coding RNAs and Predict Acute Myocardial Infarction. Scientific Reports.6(1, article 22384). DOI: 10.1161/CIR.0000000000000558.
[60] J. Ai, R. Zhang, Y. Li, J. Pu. et al.(2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications.391(1):73-77. DOI: 10.1161/CIR.0000000000000558.
[61] Z. Li, J. Lu, Y. Luo, S. Li. et al.(2014). High association between human circulating microRNA-497 and acute myocardial infarction. ScientificWorldJournal.2014, article 931845-7. DOI: 10.1161/CIR.0000000000000558.
[62] K. Agiannitopoulos, P. Pavlopoulou, K. Tsamis, K. Bampali. et al.(2018). Expression of miR-208b and miR-499 in Greek patients with acute myocardial infarction. In Vivo.32(2):313-318. DOI: 10.1161/CIR.0000000000000558.
[63] X. Liu, L. Yuan, F. Chen, L. Zhang. et al.(2017). Circulating miR-208b: a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction. Clinical Laboratory.63. DOI: 10.1161/CIR.0000000000000558.
[64] K.-L. Tong, A. Mahmood Zuhdi, W. Wan Ahmad, P. Vanhoutte. et al.(2018). Circulating microRNAs in young patients with acute coronary syndrome. International Journal of Molecular Sciences.19(5):1467. DOI: 10.1161/CIR.0000000000000558.
[65] Y. Devaux, M. Vausort, G. P. McCann, J. Zangrando. et al.(2013). MicroRNA-150: a novel marker of left ventricular remodeling after acute myocardial infarction. Circulation. Cardiovascular Genetics.6(3):290-298. DOI: 10.1161/CIR.0000000000000558.
[66] G. K. Wang, J. Q. Zhu, J. T. Zhang, Q. Li. et al.(2010). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal.31(6):659-666. DOI: 10.1161/CIR.0000000000000558.
[67] U. Grabmaier, S. Clauss, L. Gross, I. Klier. et al.(2017). Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction – The SITAGRAMI-miR analysis. International Journal of Cardiology.244:30-36. DOI: 10.1161/CIR.0000000000000558.
[68] B. Meder, A. Keller, B. Vogel, J. Haas. et al.(2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology.106(1):13-23. DOI: 10.1161/CIR.0000000000000558.
[69] X. Lin, S. Zhang, Z. Huo. (2019). Serum circulating miR-150 is a predictor of post-acute myocardial infarction heart failure. International Heart Journal.60(2):280-286. DOI: 10.1161/CIR.0000000000000558.
[70] M. Zhang, Y. J. Cheng, J. D. S. Sara, L. J. Liu. et al.(2017). Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chinese Medical Journal.130(1):51-56. DOI: 10.1161/CIR.0000000000000558.
[71] S. Miyamoto, S. Usami, Y. Kuwabara, T. Horie. et al.(2015). Expression patterns of miRNA-423-5p in the serum and pericardial fluid in patients undergoing cardiac surgery. PLoS One.10(11, article e0142904). DOI: 10.1161/CIR.0000000000000558.
[72] L. Zhu, F. Liu, H. Xie, J. Feng. et al.(2018). Diagnostic performance of microRNA-133a in acute myocardial infarction: a meta-analysis. Cardiology Journal.25. DOI: 10.1161/CIR.0000000000000558.
[73] A. P. Pilbrow, L. Cordeddu, V. A. Cameron, C. M. Frampton. et al.(2014). Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes. International Journal of Cardiology.176(2):375-385. DOI: 10.1161/CIR.0000000000000558.
[74] R. Zhang, H. Niu, T. Ban, L. Xu. et al.(2013). Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. International Journal of Cardiology.166(1):259-260. DOI: 10.1161/CIR.0000000000000558.
[75] S. Xue, D. Liu, W. Zhu, Z. Su. et al.(2019). Circulating miR-17-5p, miR-126-5p and miR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Frontiers in Physiology.10. DOI: 10.1161/CIR.0000000000000558.
[76] S. Xue, W. Zhu, D. Liu, Z. Su. et al.(2019). Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Molecular Medicine.25(1):18. DOI: 10.1161/CIR.0000000000000558.
[77] P. C. Fan, C. C. Chen, C. C. Peng, C. H. Chang. et al.(2019). A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. Journal of Translational Medicine.17(1):139. DOI: 10.1161/CIR.0000000000000558.
[78] B. Vogel, A. Keller, K. S. Frese, W. Kloos. et al.(2013). Refining diagnostic microRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clinical Chemistry.59(2):410-418. DOI: 10.1161/CIR.0000000000000558.
[79] N. Cortez-Dias, M. C. Costa, P. Carrilho-Ferreira, D. Silva. et al.(2016). Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circulation Journal.80(10):2183-2191. DOI: 10.1161/CIR.0000000000000558.
[80] S. De Rosa, S. Fichtlscherer, R. Lehmann, B. Assmus. et al.(2011). Transcoronary concentration gradients of circulating microRNAs. Circulation.124(18):1936-1944. DOI: 10.1161/CIR.0000000000000558.
[81] J. Zhu, K. Yao, Q. Wang, J. Guo. et al.(2016). Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction. Cellular Physiology and Biochemistry.40(6):1591-1602. DOI: 10.1161/CIR.0000000000000558.
[82] J. Gacoń, A. Kabłak-Ziembicka, E. Stępień, F. J. Enguita. et al.(2015). Decision-making microRNAs (miR-124, -133a/b, -34a and -134) in patients with occluded target vessel in acute coronary syndrome. Kardiologia Polska.74:280-288. DOI: 10.1161/CIR.0000000000000558.
[83] Y. Kuwabara, K. Ono, T. Horie, H. Nishi. et al.(2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation: Cardiovascular Genetics.4(4):446-454. DOI: 10.1161/CIR.0000000000000558.
[84] X. Wang, Y. Lian, X. Wen, J. Guo. et al.(2017). Expression of miR-126 and its potential function in coronary artery disease. African Health Sciences.17(2):474-480. DOI: 10.1161/CIR.0000000000000558.
[85] F. Wang, G. Long, C. Zhao, H. Li. et al.(2013). Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. Journal of Translational Medicine.11(1):222. DOI: 10.1161/CIR.0000000000000558.
[86] S. Li, L. Z. Guo, M. H. Kim, J. Y. Han. et al.(2017). Platelet microRNA for predicting acute myocardial infarction. Journal of Thrombosis and Thrombolysis.44(4):556-564. DOI: 10.1161/CIR.0000000000000558.
[87] M. Alavi-Moghaddam, M. Chehrazi, S. D. Alipoor, M. Mohammadi. et al.(2018). A preliminary study of microRNA-208b after acute myocardial infarction: impact on 6-month survival. Disease Markers.2018-7. DOI: 10.1161/CIR.0000000000000558.
[88] P. Lv, M. Zhou, J. He, W. Meng. et al.(2014). Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction. International Journal of Molecular Sciences.15(4):5774-5788. DOI: 10.1161/CIR.0000000000000558.
[89] S. Y. Yang, Y. Q. Wang, H. M. Gao, B. Wang. et al.(2016). The clinical value of circulating miR-99a in plasma of patients with acute myocardial infarction. European Review for Medical and Pharmacological Sciences.20. DOI: 10.1161/CIR.0000000000000558.
[90] A. Hsu, S. J. Chen, Y. S. Chang, H. C. Chen. et al.(2014). Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. BioMed Research International.2014-13. DOI: 10.1161/CIR.0000000000000558.
[91] W. W. Chen, R. L. Gao, L. S. Liu, M. L. Zhu. et al.(2017). China cardiovascular diseases report 2015: a summary. Journal of Geriatric Cardiology.14(1):1-10. DOI: 10.1161/CIR.0000000000000558.
[92] J. A. Ward, N. Esa, R. Pidikiti, J. E. Freedman. et al.(2013). Circulating cell and plasma microRNA profiles differ between Non-STSegment and ST-segment-elevation myocardial Infarction. Family Medicine & Medical Science Research.2(2). DOI: 10.1161/CIR.0000000000000558.
[93] N. Townsend, M. Nichols, P. Scarborough, M. Rayner. et al.(2015). Cardiovascular disease in Europe 2015: epidemiological update. European Heart Journal.36(40):2673-2674. DOI: 10.1161/CIR.0000000000000558.
[94] M. Hoekstra, C. A. C. van der Lans, B. Halvorsen, L. Gullestad. et al.(2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and Biophysical Research Communications.394(3):792-797. DOI: 10.1161/CIR.0000000000000558.
[95] E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain. et al.(2018). Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation.137(12):e67-e492. DOI: 10.1161/CIR.0000000000000558.
[96] E. Coskunpinar, H. A. Cakmak, A. K. Kalkan, N. O. Tiryakioglu. et al.(2016). Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene.591(1):90-96. DOI: 10.1161/CIR.0000000000000558.
[97] L. Yuan, X. Liu, F. Chen, L. Zhang. et al.(2016). Diagnostic and prognostic value of circulating microRNA-133a in patients with acute myocardial infarction. Clinical Laboratory.62. DOI: 10.1161/CIR.0000000000000558.
[98] R. Wang, N. Li, Y. Zhang, Y. Ran. et al.(2011). Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine.50(17):1789-1795. DOI: 10.1161/CIR.0000000000000558.
[99] R. Bai, Q. Yang, R. Xi, L. Li. et al.(2017). miR-941 as a promising biomarker for acute coronary syndrome. BMC Cardiovascular Disorders.17(1). DOI: 10.1161/CIR.0000000000000558.
[100] L. Peng, Q. Chun-guang, L. Bei-fang, D. Xue-zhi. et al.(2014). Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagnostic Pathology.9(1):89. DOI: 10.1161/CIR.0000000000000558.
[101] X. Li, Y. Yang, L. Wang, S. Qiao. et al.(2015). Plasma miR-122 and miR-3149 potentially novel biomarkers for acute coronary syndrome. PLoS One.10(5, article e0125430). DOI: 10.1161/CIR.0000000000000558.
[102] A. Wang, L. C. Kwee, E. Grass, M. L. Neely. et al.(2017). Whole blood sequencing reveals circulating microRNA associations with high- risk traits in non-ST-segment elevation acute coronary syndrome. Atherosclerosis.261:19-25. DOI: 10.1161/CIR.0000000000000558.
[103] S. Matsumoto, Y. Sakata, S. Suna, D. Nakatani. et al.(2013). Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Research.113(3):322-326. DOI: 10.1161/CIR.0000000000000558.
[104] Y. Devaux, M. Vausort, G. P. McCann, D. Kelly. et al.(2013). Correction: A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One.8(8). DOI: 10.1161/CIR.0000000000000558.
[105] Y. Cui, J. Song, S. Li, C. Lee. et al.(2018). Plasmatic microRNA signatures in elderly people with stable and unstable angina. International Heart Journal.59(1):43-50. DOI: 10.1161/CIR.0000000000000558.
[106] S. Matsumoto, Y. Sakata, D. Nakatani, S. Suna. et al.(2012). A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochemical and Biophysical Research Communications.427(2):280-284. DOI: 10.1161/CIR.0000000000000558.
[107] F. Olivieri, R. Antonicelli, L. Spazzafumo, G. Santini. et al.(2014). Admission levels of circulating miR-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction. International Journal of Cardiology.172(2):e276-e278. DOI: 10.1161/CIR.0000000000000558.
[108] T. Wei, L. Folkersen, E. Ehrenborg, A. Gabrielsen. et al.(2016). MicroRNA 486-3P as a stability marker in acute coronary syndrome,. Bioscience Reports.36(3). DOI: 10.1161/CIR.0000000000000558.
[109] R. Zhang, C. Lan, H. Pei, G. Duan. et al.(2015). Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovascular Disorders.15(1). DOI: 10.1161/CIR.0000000000000558.
[110] M. L. Guo, L. L. Guo, Y. Q. Weng. (2017). Implication of peripheral blood miRNA-124 in predicting acute myocardial infarction. European Review for Medical and Pharmacological Sciences.21. DOI: 10.1161/CIR.0000000000000558.
文献评价指标
浏览 19次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次