首页 » 文章 » 文章详细信息
eLife Volume 9 ,2020-03-06
Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality
Neuroscience
Amina A Kinkhabwala 1 , 2 , 3 Yi Gu 1 , 2 , 3 Dmitriy Aronov 1 , 2 , 3 David W Tank 1 , 2 , 3
Show affiliations
DOI:10.7554/eLife.43140
Received 2018-10-26, accepted for publication 2020-03-06, Published 2020-03-06
PDF
摘要

During spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class (‘cue cell’) encoding visual cues that could be used to correct errors in path integration in mouse medial entorhinal cortex (MEC). During virtual navigation, individual cue cells exhibited firing fields only near visual cues and their population response formed sequences repeated at each cue. These cells consistently responded to cues across multiple environments. On a track with cues on left and right sides, most cue cells only responded to cues on one side. During navigation in a real arena, they showed spatially stable activity and accounted for 32% of unidentified, spatially stable MEC cells. These cue cell properties demonstrate that the MEC contains a code representing spatial landmarks, which could be important for error correction during path integration.

关键词

Mouse;virtual reality;visual cues;cue cells;path integration;grid cells;medial entorhinal cortex

授权许可

© 2020, Kinkhabwala et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Amina A Kinkhabwala,Yi Gu,Dmitriy Aronov,David W Tank. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. eLife ,Vol.9(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] JS Taube, JP Kesslak, CW Cotman. (1992). Lesions of the rat postsubiculum impair performance on spatial tasks. Behavioral and Neural Biology.57:131-143. DOI: 10.1016/j.neuron.2014.08.042.
[2] EA Mukamel, A Nimmerjahn, MJ Schnitzer. (2009). Automated analysis of cellular signals from large-scale calcium imaging data. Neuron.63:747-760. DOI: 10.1016/j.neuron.2014.08.042.
[3] T Evans, A Bicanski, D Bush, N Burgess. et al.(2016). How environment and self-motion combine in neural representations of space. The Journal of Physiology.594:6535-6546. DOI: 10.1016/j.neuron.2014.08.042.
[4] SH Ocko, K Giocomo, S Ganguli. (2018). Emergent elasticity in the neural code for space. bioRxiv. DOI: 10.1016/j.neuron.2014.08.042.
[5] A Tsoar, R Nathan, Y Bartan, A Vyssotski. et al.(2011). Large-scale navigational map in a mammal. PNAS.108:E718-E724. DOI: 10.1016/j.neuron.2014.08.042.
[6] BJ Clark, A Sarma, JS Taube. (2009). Head direction cell instability in the anterior dorsal thalamus after lesions of the interpeduncular nucleus. Journal of Neuroscience.29:493-507. DOI: 10.1016/j.neuron.2014.08.042.
[7] E Moser, MB Moser, P Andersen. (1993). Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. The Journal of Neuroscience.13:3916-3925. DOI: 10.1016/j.neuron.2014.08.042.
[8] A Finkelstein, D Derdikman, A Rubin, JN Foerster. et al.(2015). Three-dimensional head-direction coding in the bat brain. Nature.517:159-164. DOI: 10.1016/j.neuron.2014.08.042.
[9] F Kloosterman, TJ Davidson, SN Gomperts, SP Layton. et al.(2009). Micro-drive array for chronic in vivo recording: drive fabrication. Journal of Visualized Experiments.20. DOI: 10.1016/j.neuron.2014.08.042.
[10] H Mittelstaedt. (1982). Homing by Path Integration. DOI: 10.1016/j.neuron.2014.08.042.
[11] N Ulanovsky, CF Moss. (2011). Dynamics of hippocampal spatial representation in echolocating bats. Hippocampus.21:150-161. DOI: 10.1016/j.neuron.2014.08.042.
[12] C Domnisoru, AA Kinkhabwala, DW Tank. (2013). Membrane potential dynamics of grid cells. Nature.495:199-204. DOI: 10.1016/j.neuron.2014.08.042.
[13] D Aronov, DW Tank. (2014). Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron.84:442-456. DOI: 10.1016/j.neuron.2014.08.042.
[14] BJ Clark, JP Rice, KG Akers, FT Candelaria-Cook. et al.(2013). Lesions of the dorsal tegmental nuclei disrupt control of navigation by distal landmarks in cued, directional, and place variants of the morris water task. Behavioral Neuroscience.127:566-581. DOI: 10.1016/j.neuron.2014.08.042.
[15] E Kropff, JE Carmichael, MB Moser, EI Moser. et al.(2015). Speed cells in the medial entorhinal cortex. Nature.523:419-424. DOI: 10.1016/j.neuron.2014.08.042.
[16] C Barry, N Burgess. (2014). Neural mechanisms of self-location. Current Biology.24:R330-R339. DOI: 10.1016/j.neuron.2014.08.042.
[17] BJ Clark, JP Bassett, SS Wang, JS Taube. et al.(2010). Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. Journal of Neuroscience.30:5289-5302. DOI: 10.1016/j.neuron.2014.08.042.
[18] J Krupic, M Bauza, S Burton, C Barry. et al.(2015). Grid cell symmetry is shaped by environmental geometry. Nature.518:232-235. DOI: 10.1016/j.neuron.2014.08.042.
[19] J Krupic, M Bauza, S Burton, J O'Keefe. et al.(2018). Local transformations of the hippocampal cognitive map. Science.359:1143-1146. DOI: 10.1016/j.neuron.2014.08.042.
[20] S Fusi, EK Miller, M Rigotti. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology.37:66-74. DOI: 10.1016/j.neuron.2014.08.042.
[21] JA Pérez-Escobar, O Kornienko, P Latuske, L Kohler. et al.(2016). Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. eLife.5. DOI: 10.1016/j.neuron.2014.08.042.
[22] JR Whitlock, RJ Sutherland, MP Witter, MB Moser. et al.(2008). Navigating from hippocampus to parietal cortex. PNAS.105:14755-14762. DOI: 10.1016/j.neuron.2014.08.042.
[23] K Yoon, S Lewallen, AA Kinkhabwala, DW Tank. et al.(2016). Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron.89:1086-1099. DOI: 10.1016/j.neuron.2014.08.042.
[24] C Wang, X Chen, H Lee, SS Deshmukh. et al.(2018). Egocentric coding of external items in the lateral entorhinal cortex. Science.362:945-949. DOI: 10.1016/j.neuron.2014.08.042.
[25] C Parron, E Save. (2004). Comparison of the effects of entorhinal and retrosplenial cortical lesions on habituation, reaction to spatial and non-spatial changes during object exploration in the rat. Neurobiology of Learning and Memory.82:1-11. DOI: 10.1016/j.neuron.2014.08.042.
[26] K Yoon, MA Buice, C Barry, R Hayman. et al.(2013). Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nature Neuroscience.16:1077-1084. DOI: 10.1016/j.neuron.2014.08.042.
[27] M Fyhn, T Hafting, A Treves, MB Moser. et al.(2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature.446:190-194. DOI: 10.1016/j.neuron.2014.08.042.
[28] C Parron, B Poucet, E Save. (2004). Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat. Behavioural Brain Research.154:345-352. DOI: 10.1016/j.neuron.2014.08.042.
[29] MC Fuhs, DS Touretzky. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience.26:4266-4276. DOI: 10.1016/j.neuron.2014.08.042.
[30] H Yamahachi, MB Moser, EI Moser. (2013). Map fragmentation in two- and three-dimensional environments. Behavioral and Brain Sciences.36:569-570. DOI: 10.1016/j.neuron.2014.08.042.
[31] RJ Frohardt, JP Bassett, JS Taube. (2006). Path integration and lesions within the head direction cell circuit: comparison between the roles of the anterodorsal thalamus and dorsal tegmental nucleus. Behavioral Neuroscience.120:135-149. DOI: 10.1016/j.neuron.2014.08.042.
[32] G Chen, D Manson, F Cacucci, TJ Wills. et al.(2016). Absence of visual input results in the disruption of grid cell firing in the mouse. Current Biology.26:2335-2342. DOI: 10.1016/j.neuron.2014.08.042.
[33] JJ Hopfield. (2015). Understanding emergent dynamics: using a collective activity coordinate of a neural network to recognize Time-Varying patterns. Neural Computation.27:2011-2038. DOI: 10.1016/j.neuron.2014.08.042.
[34] SA Hollup, KG Kjelstrup, J Hoff, MB Moser. et al.(2001). Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. The Journal of Neuroscience.21:4505-4513. DOI: 10.1016/j.neuron.2014.08.042.
[35] TW Chen, TJ Wardill, Y Sun, SR Pulver. et al.(2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature.499:295-300. DOI: 10.1016/j.neuron.2014.08.042.
[36] ØA Høydal, ER Skytøen, SO Andersson, MB Moser. et al.(2019). Object-vector coding in the medial entorhinal cortex. Nature.568:400-404. DOI: 10.1016/j.neuron.2014.08.042.
[37] F Carpenter, D Manson, K Jeffery, N Burgess. et al.(2015). Grid cells form a global representation of connected environments. Current Biology.25:1176-1182. DOI: 10.1016/j.neuron.2014.08.042.
[38] BJ Clark, JS Taube. (2009). Deficits in landmark navigation and path integration after lesions of the interpeduncular nucleus. Behavioral Neuroscience.123:490-503. DOI: 10.1016/j.neuron.2014.08.042.
[39] B Larson, S Abeytunge, M Rajadhyaksha. (2011). Performance of full-pupil line-scanning reflectance confocal microscopy in human skin and oral mucosa in vivo. Biomedical Optics Express.2:2055-2067. DOI: 10.1016/j.neuron.2014.08.042.
[40] C Lever, S Burton, A Jeewajee, J O'Keefe. et al.(2009). Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience.29:9771-9777. DOI: 10.1016/j.neuron.2014.08.042.
[41] M Geva-Sagiv, L Las, Y Yovel, N Ulanovsky. et al.(2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience.16:94-108. DOI: 10.1016/j.neuron.2014.08.042.
[42] ED Pollock, N Wei, X Balasubramanian. (2018). Dynamic self-organized error-correction of grid cells by border cells. bioRxiv. DOI: 10.1016/j.neuron.2014.08.042.
[43] LM Giocomo, T Stensola, T Bonnevie, T Van Cauter. et al.(2014). Topography of head direction cells in medial entorhinal cortex. Current Biology.24:252-262. DOI: 10.1016/j.neuron.2014.08.042.
[44] TA Pologruto, BL Sabatini, K Svoboda. (2003). ScanImage: flexible software for operating laser scanning microscopes. Biomedical Engineering Online.2. DOI: 10.1016/j.neuron.2014.08.042.
[45] D Derdikman, JR Whitlock, A Tsao, M Fyhn. et al.(2009). Fragmentation of grid cell maps in a multicompartment environment. Nature Neuroscience.12:1325-1332. DOI: 10.1016/j.neuron.2014.08.042.
[46] JL Gauthier, DW Tank. (2018). A dedicated population for reward coding in the Hippocampus. Neuron.99:179-193. DOI: 10.1016/j.neuron.2014.08.042.
[47] M Rigotti, O Barak, MR Warden, XJ Wang. et al.(2013). The importance of mixed selectivity in complex cognitive tasks. Nature.497:585-590. DOI: 10.1016/j.neuron.2014.08.042.
[48] H Dana, TW Chen, A Hu, BC Shields. et al.(2014). Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLOS ONE.9. DOI: 10.1016/j.neuron.2014.08.042.
[49] D Bush, C Barry, D Manson, N Burgess. et al.(2015). Using Grid Cells for Navigation. Neuron.87:507-520. DOI: 10.1016/j.neuron.2014.08.042.
[50] JL Calton, RW Stackman, JP Goodridge, WB Archey. et al.(2003). Hippocampal place cell instability after lesions of the head direction cell network. The Journal of Neuroscience.23:9719-9731. DOI: 10.1016/j.neuron.2014.08.042.
[51] JL Calton, CS Turner, DL Cyrenne, BR Lee. et al.(2008). Landmark control and updating of self-movement cues are largely maintained in head direction cells after lesions of the posterior parietal cortex. Behavioral Neuroscience.122:827-840. DOI: 10.1016/j.neuron.2014.08.042.
[52] JG Heys, KV Rangarajan, DA Dombeck. (2014). The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron.84:1079-1090. DOI: 10.1016/j.neuron.2014.08.042.
[53] CD Harvey, P Coen, DW Tank. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature.484:62-68. DOI: 10.1016/j.neuron.2014.08.042.
[54] MG Campbell, SA Ocko, CS Mallory, IIC Low. et al.(2018). Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nature Neuroscience.21:1096-1106. DOI: 10.1016/j.neuron.2014.08.042.
[55] CD Harvey, F Collman, DA Dombeck, DW Tank. et al.(2009). Intracellular dynamics of hippocampal place cells during virtual navigation. Nature.461:941-946. DOI: 10.1016/j.neuron.2014.08.042.
[56] V Mante, D Sussillo, KV Shenoy, WT Newsome. et al.(2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature.503:78-84. DOI: 10.1016/j.neuron.2014.08.042.
[57] A Rubin, MM Yartsev, N Ulanovsky. (2014). Encoding of head direction by hippocampal place cells in bats. The Journal of Neuroscience.34:1067-1080. DOI: 10.1016/j.neuron.2014.08.042.
[58] L Madisen, AR Garner, D Shimaoka, AS Chuong. et al.(2015). Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron.85:942-958. DOI: 10.1016/j.neuron.2014.08.042.
[59] T Solstad, CN Boccara, E Kropff, MB Moser. et al.(2008). Representation of geometric borders in the entorhinal cortex. Science.322:1865-1868. DOI: 10.1016/j.neuron.2014.08.042.
[60] BL McNaughton, FP Battaglia, O Jensen, EI Moser. et al.(2006). Path integration and the neural basis of the 'cognitive map'. Nature Reviews Neuroscience.7:663-678. DOI: 10.1016/j.neuron.2014.08.042.
[61] EJ Golob, JS Taube. (1999). Head direction cells in rats with hippocampal or overlying neocortical lesions: evidence for impaired angular path integration. The Journal of Neuroscience.19:7198-7211. DOI: 10.1016/j.neuron.2014.08.042.
[62] EJ Golob, DA Wolk, JS Taube. (1998). Recordings of postsubiculum head direction cells following lesions of the laterodorsal thalamic nucleus. Brain Research.780:9-19. DOI: 10.1016/j.neuron.2014.08.042.
[63] DA Dombeck, CD Harvey, L Tian, LL Looger. et al.(2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience.13:1433-1440. DOI: 10.1016/j.neuron.2014.08.042.
[64] T Stensola, H Stensola, MB Moser, EI Moser. et al.(2015). Shearing-induced asymmetry in entorhinal grid cells. Nature.518:207-212. DOI: 10.1016/j.neuron.2014.08.042.
[65] DA Dombeck, AN Khabbaz, F Collman, TL Adelman. et al.(2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron.56:43-57. DOI: 10.1016/j.neuron.2014.08.042.
[66] LM Giocomo. (2016). Environmental boundaries as a mechanism for correcting and anchoring spatial maps. The Journal of Physiology.594:6501-6511. DOI: 10.1016/j.neuron.2014.08.042.
[67] S Stewart, A Jeewajee, TJ Wills, N Burgess. et al.(2014). Boundary coding in the rat subiculum. Philosophical Transactions of the Royal Society B: Biological Sciences.369. DOI: 10.1016/j.neuron.2014.08.042.
[68] GW Diehl, OJ Hon, S Leutgeb, JK Leutgeb. et al.(2017). Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron.94:83-92. DOI: 10.1016/j.neuron.2014.08.042.
[69] CN Boccara, F Sargolini, VH Thoresen, T Solstad. et al.(2010). Grid cells in pre- and parasubiculum. Nature Neuroscience.13:987-994. DOI: 10.1016/j.neuron.2014.08.042.
[70] Y Burak, IR Fiete. (2009). Accurate path integration in continuous attractor network models of grid cells. PLOS Computational Biology.5. DOI: 10.1016/j.neuron.2014.08.042.
[71] K Hardcastle, N Maheswaranathan, S Ganguli, LM Giocomo. et al.(2017). A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron.94:375-387. DOI: 10.1016/j.neuron.2014.08.042.
[72] SS Deshmukh, JJ Knierim. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus.23:253-267. DOI: 10.1016/j.neuron.2014.08.042.
[73] VH Brun, S Leutgeb, HQ Wu, R Schwarcz. et al.(2008). Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron.57:290-302. DOI: 10.1016/j.neuron.2014.08.042.
[74] K Hardcastle, S Ganguli, LM Giocomo. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron.86:827-839. DOI: 10.1016/j.neuron.2014.08.042.
[75] RJ Low, Y Gu, DW Tank. (2014). Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. PNAS.111:18739-18744. DOI: 10.1016/j.neuron.2014.08.042.
[76] T Hafting, M Fyhn, S Molden, MB Moser. et al.(2005). Microstructure of a spatial map in the entorhinal cortex. Nature.436:801-806. DOI: 10.1016/j.neuron.2014.08.042.
[77] Y Gu, S Lewallen, AA Kinkhabwala, C Domnisoru. et al.(2018). A Map-like Micro-Organization of grid cells in the medial entorhinal cortex. Cell.175:736-750. DOI: 10.1016/j.neuron.2014.08.042.
文献评价指标
浏览 135次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次