首页 » 文章 » 文章详细信息
International Journal of Aerospace Engineering Volume 2020 ,2020-02-22
Computational Investigation of Flow Control Methods in the Impeller Rear Cavity
Research Article
Guang Liu 1 Qiang Du 1 Jun Liu 1 Pei Wang 1 RuoNan Wang 1 ZengYan Lian 1
Show affiliations
DOI:10.1155/2020/2187975
Received 2019-11-27, accepted for publication 2020-01-20, Published 2020-02-22
PDF
摘要

In typical median and small aeroengines, the air used to realize the functions such as cooling of turbine blades and disks, sealing of turbine cavities and bearing chambers, adjusting of rotating assembly axial load is normally drawn through the rear cavity of centrifugal impeller, so the thorough understanding of flow characteristics and pressure distribution and the proposal of the corresponding control methods in the cavity are the key to design the rational secondary air system. With an impeller rear cavity in a small turbofan engine as an object, the current study was dedicated to the investigation of flow control methods in the cavity. Two methods, namely, baffle and swirl-controlled orifice, were proposed to regulate the pressure loss and distribution in the cavity. Furthermore, the influence of geometry parameters of the two methods such as the length of baffle, the space between the baffle and rotating disk wall, the orientation, and radial position of swirl-controlled orifice was investigated. The CFD results show that the swirl-controlled orifice which could deswirl the flow is more effective in regulating the pressure loss and its distribution in cavity than baffle. The variation of the radial position of the swirl-controlled orifice had little influence on pressure loss but obvious influence on pressure distribution; therefore, decreasing the radial position could reduce the axial load on the rotating disk without changing the outlet pressure.

授权许可

Copyright © 2020 Guang Liu et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Qiang Du.Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuan Road, Beijing 100190, China, cas.cn.duqiang@iet.cn

推荐引用方式

Guang Liu,Qiang Du,Jun Liu,Pei Wang,RuoNan Wang,ZengYan Lian. Computational Investigation of Flow Control Methods in the Impeller Rear Cavity. International Journal of Aerospace Engineering ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Kurokawa, T. Toyokura. (1972). Study on axial thrust of radial flow turbomachinery. Japan Society of Mechanical Engineers.2:31. DOI: 10.1016/S0997-7546(99)80014-4.
[2] K. J. Hart, A. B. Turner. Influence of radial inflow on rotor-stator cavity pressure distributions. . DOI: 10.1016/S0997-7546(99)80014-4.
[3] Z. EI-Oun, P. H. Meller, A. B. Turner. Sealing of a shrouded rotor-stator system with pre-swirl coolant. . DOI: 10.1016/S0997-7546(99)80014-4.
[4] K. J. Hart, A. B. Turner. Simple design methods for the prediction of radial static pressure distribution in a rotor-stator cavity with radial inflow. . DOI: 10.1016/S0997-7546(99)80014-4.
[5] D. May, J. W. Chew, T. J. Scanlon. (2013). Prediction of deswirled radial inflow in rotating cavities with hysteresis. Journal of Turbomachinery.135(4). DOI: 10.1016/S0997-7546(99)80014-4.
[6] S. Poncet, M. P. Chauve, R. Schiestel. (2005). Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow. Physics of Fluids.17(7). DOI: 10.1016/S0997-7546(99)80014-4.
[7] R. Debuchy, F. Abdel Nour, G. Bois. (2008). On the flow behavior in rotor-stator system with superposed flow. International Journal of Rotating Machinery.2008-10. DOI: 10.1016/S0997-7546(99)80014-4.
[8] S. Poncet, M. P. Chauve, P. Gal. (2005). Turbulent rotating disk flow with inward throughflow. Journal of Fluid Mechanics.522:253-262. DOI: 10.1016/S0997-7546(99)80014-4.
[9] J. W. Chew, P. R. Farthing, J. M. Owen, B. Stratford. et al.(1989). The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow. Journal of Turbomachinery.111(3):349-356. DOI: 10.1016/S0997-7546(99)80014-4.
[10] G. Liu, Q. Du, J. Liu, P. Wang. et al.(2016). Numerical investigation of radial inflow in the impeller rear cavity with and without baffle. Science China Technological Sciences.59(3):456-467. DOI: 10.1016/S0997-7546(99)80014-4.
[11] R. Debuchy, A. Dyment, H. Muhe, P. Micheau. et al.(1998). Radial inflow between a rotating and a stationary disc. European Journal of Mechanics–B/Fluids.17(6):791-810. DOI: 10.1016/S0997-7546(99)80014-4.
[12] X. Liu, K. V. Patel. A CFD analysis of the flow in impeller rear cavity of aeroengines. . DOI: 10.1016/S0997-7546(99)80014-4.
[13] N. Dimitrie, P. Michael. Secondary air system in aeroengines employing vortex reducers. . DOI: 10.1016/S0997-7546(99)80014-4.
[14] J. R. Pincombe. (1988). Flow visualization and velocity measurements in a rotor-stator system with a forced radial inflow. Report 88/TFMRC/TN61. DOI: 10.1016/S0997-7546(99)80014-4.
[15] P. R. Farthing, J. W. Chew, J. M. Owen. The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow. :106-114. DOI: 10.1016/S0997-7546(99)80014-4.
文献评价指标
浏览 74次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次