首页 » 文章 » 文章详细信息
BioMed Research International Volume 2020 ,2020-02-21
Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Increasing GSK-3β Phosphorylation Level via Adenosine A1 Receptor
Research Article
Wujun Geng 1 , 2 Libin Cai 1 Kunyuan Han 1 Ding Li 1 Yunchang Mo 1 Qinxue Dai 1 Hongli Tang 1 Minyuan Zhang 1 Percy David Papa Akuetteh 1 Meita Felicia Balelang 1 Junlu Wang 1 , 3
Show affiliations
DOI:10.1155/2020/6848450
Received 2019-08-21, accepted for publication 2019-12-31, Published 2020-02-21
PDF
摘要

Objective. To observe the effect of adenosine A1 receptor in the hippocampus of mice on GSK-3β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. Method. The model of middle cerebral artery occlusion (MCAO) was established and grouped into electroacupuncture pretreatment group (EA group), MCAO group, and sham-operated group (Sham group). The neurobehavioral manifestation, the volume of cerebral infarction, and its related protein changes in mice in each group were observed. Then, adenosine Α1 receptor antagonist and agonist were injected intraperitoneally to observe the effects of A1 receptor on the phosphorylation level of GSK-3β, neurobehavioral changes, and infarction volume. Results. (1) Compared with the MCAO group (24 hours after reperfusion), the infarct size in the EA group decreased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are increased. (2) Compared with the EA group, the infarct size in the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) group increased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are decreased. (3) Compared with the MCAO group, the infarct size in the A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) group decreased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β are increased. There was no significant difference between the EA group and CCPA group. Conclusions. Electroacupuncture pretreatment can increase GSK-3β phosphorylation level via activating A1 receptor, to protect neurons in ischemia-reperfusion injury.

授权许可

Copyright © 2020 Wujun Geng et al. 2020
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Junlu Wang.Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, wzhospital.cn;Department of Anesthesiology, The People’s Hospital of Wencheng County, Wenzhou, Zhejiang, China.wangjunlu973@163.com

推荐引用方式

Wujun Geng,Libin Cai,Kunyuan Han,Ding Li,Yunchang Mo,Qinxue Dai,Hongli Tang,Minyuan Zhang,Percy David Papa Akuetteh,Meita Felicia Balelang,Junlu Wang. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Increasing GSK-3β Phosphorylation Level via Adenosine A1 Receptor. BioMed Research International ,Vol.2020(2020)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. El Amki, T. Clavier, N. Perzo, R. Bernard. et al.(2015). Hypothalamic, thalamic and hippocampal lesions in the mouse MCAO model: potential involvement of deep cerebral arteries?. Journal of Neuroscience Methods.254:80-85. DOI: 10.1017/cjn.2015.288.
[2] M. Golpich, E. Amini, F. Hemmati. (2015). Glycogen synthase kinase-3 beta (GSK-3) signaling: implications for Parkinson’s disease. Pharmacological Research.97:16-26. DOI: 10.1017/cjn.2015.288.
[3] R. S. Jope, G. V. W. Johnson. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends in Biochemical Sciences.29(2):95-102. DOI: 10.1017/cjn.2015.288.
[4] F. C. Barone, D. J. Knudsen, A. H. Nelson, G. Z. Feuerstein. et al.(1993). Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. Journal of Cerebral Blood Flow & Metabolism.13(4):683-692. DOI: 10.1017/cjn.2015.288.
[5] G. J. Del Zoppo, J. L. Saver, E. C. Jauch, H. P. Adams. et al.(2009). Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator. Stroke.40(8):2945-2948. DOI: 10.1017/cjn.2015.288.
[6] R. A. Kloner, R. B. Jennings. (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Circulation.104(24):2981-2989. DOI: 10.1017/cjn.2015.288.
[7] J. M. Findlay, J. Nisar, T. Darsaut. (2016). Cerebral vasospasm: a review. Canadian Journal of Neurological Sciences/Journal Canadien des Sciences Neurologiques.43(1):15-32. DOI: 10.1017/cjn.2015.288.
[8] M. Hetman, J. E. Cavanaugh, D. Kimelman, Z. Xia. et al.(2000). Role of glycogen synthase kinase-3 in neuronal apoptosis induced by trophic withdrawal. The Journal of Neuroscience.20(7):2567-2574. DOI: 10.1017/cjn.2015.288.
[9] G. N. Bijur, P. De Sarno, R. S. Jope. (2000). Glycogen synthase kinase-3 facilitates staurosporine- and heat shock-induced apoptosis. Journal of Biological Chemistry.275(11):7583-7590. DOI: 10.1017/cjn.2015.288.
[10] S. Mioranzza, P. H. S. Botton, M. S. Costa. (2010). Adenosine A1 receptors are modified by acute treatment with methylphenidate in adult mice. Brain Research.1357:62-69. DOI: 10.1017/cjn.2015.288.
[11] J. H. Garcia, S. Wagner, K.-F. Liu, X.-j. Hu. et al.(1995). Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stroke.26(4):627-635. DOI: 10.1017/cjn.2015.288.
[12] Y. Liu, L. Xiong, S. Chen, Q. Wang. et al.(2006). Neuroanesthesia and Intensive Care Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Canadian Journal of Anesthesia/Journal Canadien D’anesthésie.53(2):194-201. DOI: 10.1017/cjn.2015.288.
[13] T. N. Luong, H. J. Carlisle, A. Southwell, P. H. Patterson. et al.(2011). Assessment of motor balance and coordination in mice using the balance beam. Journal of Visualized Experiments(49):2376. DOI: 10.1017/cjn.2015.288.
[14] A. Ekonomou, O. Pagonopoulou, F. Angelatou. (2000). Age-dependent changes in adenosine A1 receptor and uptake site binding in the mouse brain: an autoradiographic study. Journal of Neuroscience Research.60(2):257-265. DOI: 10.1017/cjn.2015.288.
[15] D. D. Liang, H. F. Wang, M. X. Zhang. (2013). Local adenosine A1 receptors of baihui acupoint mediate cerebral ischemia tolerance induced by Electroacupuncture. Zhonghua Yi Xue Za Zhi.93(7):537-540. DOI: 10.1017/cjn.2015.288.
[16] S. Gao. (2008). Thinking of some problems in experimental acupuncture and moxibustion science. Zhongguo Zhen Jiu.28(5):378-380. DOI: 10.1017/cjn.2015.288.
[17] F. V. Duarte, J. A. Amorim, A. T. Varela. (2017). Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signalling.13(2):179-190. DOI: 10.1017/cjn.2015.288.
[18] M. Juhaszova, D. B. Zorov, S.-H. Kim. (2004). Glycogen synthase kinase-3 mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation.113(11):1535-1549. DOI: 10.1017/cjn.2015.288.
[19] Z. Chen, C. Zhong. (2013). Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Progress in Neurobiology.108:21-43. DOI: 10.1017/cjn.2015.288.
[20] T. Miura, M. Tanno. (2010). Mitochondria and GSK-3 in cardioprotection against ischemia/reperfusion injury. Cardiovascular Drugs and Therapy.24(3):255-263. DOI: 10.1017/cjn.2015.288.
[21] M. W. Alnouri, S. Jepards, A. Casari, A. C. Schiedel. et al.(2015). Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signalling.11(3):389-407. DOI: 10.1017/cjn.2015.288.
[22] N. Kozlovsky, R. H. Belmaker, G. Agam. (2002). GSK-3 and the neurodevelopmental hypothesis of schizophrenia. European Neuropsychopharmacology.12(1):13-25. DOI: 10.1017/cjn.2015.288.
[23] H. Wei, X. Yao, L. Yang. (2013). Glycogen synthase kinase-3 is involved in electroacupuncture pretreatment via the cannabinoid CB1 receptor in ischemic stroke. Molecular Neurobiology.49(1):326-336. DOI: 10.1017/cjn.2015.288.
[24] S. Wang, F. Zhang, G. Zhao. (2017). Mitochondrial PKC- deficiency promotes I/R-mediated myocardial injuryviaGSK3-dependent mitochondrial permeability transition pore opening. Journal of Cellular and Molecular Medicine.21(9):2009-2021. DOI: 10.1017/cjn.2015.288.
[25] N. Shimamura, G. Matchett, T. Tsubokawa, H. Ohkuma. et al.(2006). Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. Journal of Neuroscience Methods.156(1-2):161-165. DOI: 10.1017/cjn.2015.288.
[26] E. J. Wexler, E. E. Peters, A. Gonzales, M. L. Gonzales. et al.(2002). An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat. Journal of Neuroscience Methods.113(1):51-58. DOI: 10.1017/cjn.2015.288.
[27] F. Liu, L. D. McCullough. (2011). Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. Journal of Biomedicine Biotechnology.2011-9. DOI: 10.1017/cjn.2015.288.
[28] J. P. Konsman. (2003). The mouse brain in stereotaxic coordinates. Psychoneuroendocrinology.28(6):827-828. DOI: 10.1017/cjn.2015.288.
[29] L.-J. Zhou, Y.-B. Mo, X. Bu. (2018). Erinacine facilitates the opening of the mitochondrial permeability transition pore through the inhibition of the PI3K/ akt/GSK-3 signaling pathway in human hepatocellular carcinoma. Cellular Physiology and Biochemistry.50(3):851-867. DOI: 10.1017/cjn.2015.288.
[30] W.-Y. Kim, X. Wang, Y. Wu. (2009). GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience.12(11):1390-1397. DOI: 10.1017/cjn.2015.288.
[31] D. Mayor. (2008). The Neurochemical Basis of Pain Relief by Acupuncture. DOI: 10.1017/cjn.2015.288.
[32] F. Mirakhori, B. Zeynali, A. P. Tafreshi, A. Shirmohammadian. et al.(2013). Lithium induces follicular atresia in rat ovary through a GSK-3/-catenin dependent mechanism. Molecular Reproduction and Development.80(4):286-296. DOI: 10.1017/cjn.2015.288.
[33] M. Hoshi, A. Takashima, K. Noguchi. (1996). Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proceedings of the National Academy of Sciences.93(7):2719-2723. DOI: 10.1017/cjn.2015.288.
[34] V. Bouet, M. Boulouard, J. Toutain. (2009). The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nature Protocols.4(10):1560-1564. DOI: 10.1017/cjn.2015.288.
[35] H. Endo, C. Nito, H. Kamada, T. Nishi. et al.(2006). Activation of the akt/gsk3 signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. Journal of Cerebral Blood Flow & Metabolism.26(12):1479-1489. DOI: 10.1017/cjn.2015.288.
[36] B. Li, Y. Zhu, Q. Sun. (2018). Reversal of the Warburg effect with DCA in PDGFtreated human PASMC is potentiated by pyruvate dehydrogenase kinase1 inhibition mediated through blocking Akt/GSK3beta signalling. International Journal of Molecular Medicine.42:1391-1400. DOI: 10.1017/cjn.2015.288.
[37] C. E. Murry, R. B. Jennings, K. A. Reimer. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation.74(5):1124-1136. DOI: 10.1017/cjn.2015.288.
文献评价指标
浏览 1041次
下载全文 34次
评分次数 0次
用户评分 0.0分
分享 0次