首页 » 文章 » 文章详细信息
eLife Volume 8 ,2019-12-30
Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations
Biochemistry and Chemical Biology
Nicole Hajicek 1 Nicholas C Keith 1 Edhriz Siraliev-Perez 2 Brenda RS Temple 2 , 3 Weigang Huang 4 Qisheng Zhang 1 , 4 , 5 T Kendall Harden 1 John Sondek 1 , 2 , 5
Show affiliations
Received 2019-09-06, accepted for publication 2019-12-30, Published 2019-12-30

Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.


None;cancer;molecular dynamics;X-ray crystallography;interfacial regulation;allostery;phospholipase C


© 2019, Hajicek et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Nicole Hajicek,Nicholas C Keith,Edhriz Siraliev-Perez,Brenda RS Temple,Weigang Huang,Qisheng Zhang,T Kendall Harden,John Sondek. Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. eLife ,Vol.8(2019)



[1] W Huang, SN Hicks, J Sondek, Q Zhang. et al.(2011). A fluorogenic, small molecule reporter for mammalian phospholipase C isozymes. ACS Chemical Biology.6:223-228. DOI: 10.1107/S0907444909052925.
[2] F Ozdener, C Dangelmaier, B Ashby, SP Kunapuli. et al.(2002). Activation of phospholipase Cγ2 by tyrosine phosphorylation. Molecular Pharmacology.62:672-679. DOI: 10.1107/S0907444909052925.
[3] Z Huang, WM Marsiglia, U Basu Roy, N Rahimi. et al.(2016). Two FGF receptor kinase molecules act in concert to recruit and transphosphorylate phospholipase Cγ. Molecular Cell.61:98-110. DOI: 10.1107/S0907444909052925.
[4] L Deng, CA Velikovsky, CP Swaminathan, S Cho. et al.(2005). Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cγ1. Journal of Molecular Biology.352:1-10. DOI: 10.1107/S0907444909052925.
[5] AM Lyon, VM Tesmer, VD Dhamsania, DM Thal. et al.(2011). An autoinhibitory helix in the C-terminal region of phospholipase C-β mediates Gα activation. Nature Structural & Molecular Biology.18:999-1005. DOI: 10.1107/S0907444909052925.
[6] L Parker, H Bahat, MY Appel, DV Baum. et al.(2019). Phospholipase C-Gamma 2 activity in familial steroid-sensitive nephrotic syndrome. Pediatric Research.85:719-723. DOI: 10.1107/S0907444909052925.
[7] ML Vetter, D Martin-Zanca, LF Parada, JM Bishop. et al.(1991). Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ1 by a kinase activity associated with the product of the trk protooncogene. PNAS.88:5650-5654. DOI: 10.1107/S0907444909052925.
[8] E Peles, RB Levy, E Or, A Ullrich. et al.(1991). Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase C gamma. The EMBO Journal.10:2077-2086. DOI: 10.1107/S0907444909052925.
[9] CL Arteaga, MD Johnson, G Todderud, RJ Coffey. et al.(1991). Elevated content of the tyrosine kinase substrate phospholipase C-γ1 in primary human breast carcinomas. PNAS.88:10435-10439. DOI: 10.1107/S0907444909052925.
[10] B Ananthanarayanan, S Das, SG Rhee, D Murray. et al.(2002). Membrane targeting of C2 domains of phospholipase C-δ isoforms. Journal of Biological Chemistry.277:3568-3575. DOI: 10.1107/S0907444909052925.
[11] L Zimmermann, A Stephens, SZ Nam, D Rau. et al.(2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology.430:2237-2243. DOI: 10.1107/S0907444909052925.
[12] JP Vaqué, G Gómez-López, V Monsálvez, I Varela. et al.(2014). PLCG1 mutations in cutaneous T-cell lymphomas. Blood.123:2034-2043. DOI: 10.1107/S0907444909052925.
[13] SB Asokan, HE Johnson, A Rahman, SJ King. et al.(2014). Mesenchymal chemotaxis requires selective inactivation of myosin II at the leading edge via a noncanonical PLCγ/PKCα pathway. Developmental Cell.31:747-760. DOI: 10.1107/S0907444909052925.
[14] D Tvorogov, G Carpenter. (2002). EGF-dependent association of phospholipase C-γ1 with c-Cbl. Experimental Cell Research.277:86-94. DOI: 10.1107/S0907444909052925.
[15] CL Law, KA Chandran, SP Sidorenko, EA Clark. et al.(1996). Phospholipase C-γ1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Molecular and Cellular Biology.16:1305-1315. DOI: 10.1107/S0907444909052925.
[16] KM de Lange, L Moutsianas, JC Lee, CA Lamb. et al.(2017). Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature Genetics.49:256-261. DOI: 10.1107/S0907444909052925.
[17] KE DeBell, BA Stoica, MC Verí, A Di Baldassarre. et al.(1999). Functional independence and interdependence of the Src homology domains of phospholipase C-γ1 in B-cell receptor signal transduction. Molecular and Cellular Biology.19:7388-7398. DOI: 10.1107/S0907444909052925.
[18] JW Lomasney, HF Cheng, M Kobayashi, K King. et al.(2012). Structural basis for calcium and phosphatidylserine regulation of phospholipase C δ1. Biochemistry.51:2246-2257. DOI: 10.1107/S0907444909052925.
[19] G Guittard, A Dios-Esponera, DC Palmer, I Akpan. et al.(2018). The Cish SH2 domain is essential for PLC-γ1 regulation in TCR stimulated CD8 T cells. Scientific Reports.8. DOI: 10.1107/S0907444909052925.
[20] MA Lemmon, J Schlessinger. (2010). Cell signaling by receptor tyrosine kinases. Cell.141:1117-1134. DOI: 10.1107/S0907444909052925.
[21] N Hajicek, TH Charpentier, JR Rush, TK Harden. et al.(2013). Autoinhibition and phosphorylation-induced activation of phospholipase C-γ isozymes. Biochemistry.52:4810-4819. DOI: 10.1107/S0907444909052925.
[22] TK Harden, J Sondek. (2006). Regulation of phospholipase C isozymes by ras superfamily GTPases. Annual Review of Pharmacology and Toxicology.46:355-379. DOI: 10.1107/S0907444909052925.
[23] SN Hicks, MR Jezyk, S Gershburg, JP Seifert. et al.(2008). General and versatile autoinhibition of PLC isozymes. Molecular Cell.31:383-394. DOI: 10.1107/S0907444909052925.
[24] DJ de Gorter, EA Beuling, R Kersseboom, S Middendorp. et al.(2007). Bruton's tyrosine kinase and phospholipase Cγ2 mediate chemokine-controlled B cell migration and homing. Immunity.26:93-104. DOI: 10.1107/S0907444909052925.
[25] S Nishibe, MI Wahl, SM Hernández-Sotomayor, NK Tonks. et al.(1990). Increase of the catalytic activity of phospholipase C-γ1 by tyrosine phosphorylation. Science.250:1253-1256. DOI: 10.1107/S0907444909052925.
[26] Z Timsah, Z Ahmed, CC Lin, FA Melo. et al.(2014). Competition between Grb2 and Plcγ1 for FGFR2 regulates basal phospholipase activity and invasion. Nature Structural & Molecular Biology.21:180-188. DOI: 10.1107/S0907444909052925.
[27] DA Landau, C Sun, D Rosebrock, SEM Herman. et al.(2017). The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nature Communications.8. DOI: 10.1107/S0907444909052925.
[28] JH Bae, ED Lew, S Yuzawa, F Tomé. et al.(2009). The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell.138:514-524. DOI: 10.1107/S0907444909052925.
[29] M Nishida, K Sugimoto, Y Hara, E Mori. et al.(2003). Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCγ2 in B lymphocytes. The EMBO Journal.22:4677-4688. DOI: 10.1107/S0907444909052925.
[30] TC Terwilliger, RW Grosse-Kunstleve, PV Afonine, NW Moriarty. et al.(2008). Iterative model building, structure refinement and density modification with the wizard. Acta Crystallographica Section D Biological Crystallography.64:61-69. DOI: 10.1107/S0907444909052925.
[31] Z Otwinowski, W Minor. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology.276:307-326. DOI: 10.1107/S0907444909052925.
[32] S Behjati, PS Tarpey, H Sheldon, I Martincorena. et al.(2014). Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nature Genetics.46:376-379. DOI: 10.1107/S0907444909052925.
[33] MJ Ombrello, EF Remmers, G Sun, AF Freeman. et al.(2012). Cold urticaria, immunodeficiency, and autoimmunity related to deletions. The New England Journal of Medicine.366:330-338. DOI: 10.1107/S0907444909052925.
[34] P Emsley, B Lohkamp, WG Scott, K Cowtan. et al.(2010). Features and development of C. Acta Crystallographica. Section D, Biological Crystallography.66:486-501. DOI: 10.1107/S0907444909052925.
[35] A Braiman, M Barda-Saad, CL Sommers, LE Samelson. et al.(2006). Recruitment and activation of PLCγ1 in T cells: a new insight into old domains. The EMBO Journal.25:774-784. DOI: 10.1107/S0907444909052925.
[36] T Takahashi, S Yamaguchi, K Chida, M Shibuya. et al.(2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. The EMBO Journal.20:2768-2778. DOI: 10.1107/S0907444909052925.
[37] TD Bunney, D Esposito, C Mas-Droux, E Lamber. et al.(2012). Structural and functional integration of the plcγ interaction domains critical for regulatory mechanisms and signaling deregulation. Structure.20:2062-2075. DOI: 10.1107/S0907444909052925.
[38] M Knyazhitsky, E Moas, E Shaginov, A Luria. et al.(2012). Vav1 oncogenic mutation inhibits T cell receptor-induced calcium mobilization through inhibition of phospholipase Cγ1 activation. Journal of Biological Chemistry.287:19725-19735. DOI: 10.1107/S0907444909052925.
[39] MV Ellis, SR James, O Perisic, CP Downes. et al.(1998). Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of PLCδ1. Journal of Biological Chemistry.273:11650-11659. DOI: 10.1107/S0907444909052925.
[40] KL Everett, TD Bunney, Y Yoon, F Rodrigues-Lima. et al.(2009). Characterization of phospholipase Cγ enzymes with gain-of-function mutations. Journal of Biological Chemistry.284:23083-23093. DOI: 10.1107/S0907444909052925.
[41] R Straussman, T Morikawa, K Shee, M Barzily-Rokni. et al.(2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature.487:500-504. DOI: 10.1107/S0907444909052925.
[42] H Koss, TD Bunney, S Behjati, M Katan. et al.(2014). Dysfunction of phospholipase Cγ in immune disorders and cancer. Trends in Biochemical Sciences.39:603-611. DOI: 10.1107/S0907444909052925.
[43] YR Yang, JH Choi, JS Chang, HM Kwon. et al.(2012). Diverse cellular and physiological roles of phospholipase C-γ1. Advances in Biological Regulation.52:138-151. DOI: 10.1107/S0907444909052925.
[44] Q Zhou, GS Lee, J Brady, S Datta. et al.(2012). A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. The American Journal of Human Genetics.91:713-720. DOI: 10.1107/S0907444909052925.
[45] JA Woyach, RR Furman, TM Liu, HG Ozer. et al.(2014). Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. New England Journal of Medicine.370:2286-2294. DOI: 10.1107/S0907444909052925.
[46] TR Wilson, J Fridlyand, Y Yan, E Penuel. et al.(2012). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature.487:505-509. DOI: 10.1107/S0907444909052925.
[47] HK Kim, JW Kim, A Zilberstein, B Margolis. et al.(1991). PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell.65:435-441. DOI: 10.1107/S0907444909052925.
[48] MJ Kiel, AA Sahasrabuddhe, DCM Rolland, T Velusamy. et al.(2015). Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nature Communications.6. DOI: 10.1107/S0907444909052925.
[49] L Stols, M Gu, L Dieckman, R Raffen. et al.(2002). A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expression and Purification.25:8-15. DOI: 10.1107/S0907444909052925.
[50] DA Case, DS Cerutti, I Cheatham, TE Darden. et al.(2017). AMBER 2017. DOI: 10.1107/S0907444909052925.
[51] R Sims, SJ van der Lee, AC Naj, C Bellenguez. et al.(2017). Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics.49:1373-1384. DOI: 10.1107/S0907444909052925.
[52] JA Burger, DA Landau, A Taylor-Weiner, I Bozic. et al.(2016). Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications.7. DOI: 10.1107/S0907444909052925.
[53] O Nakanishi, F Shibasaki, M Hidaka, Y Homma. et al.(1993). Phospholipase C-γ1 associates with viral and cellular src kinases. Journal of Biological Chemistry.268:10754-10759. DOI: 10.1107/S0907444909052925.
[54] SM Gagné, S Tsuda, MX Li, LB Smillie. et al.(1995). Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nature Structural & Molecular Biology.2:784-789. DOI: 10.1107/S0907444909052925.
[55] G Mouneimne, L Soon, V DesMarais, M Sidani. et al.(2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. The Journal of Cell Biology.166:697-708. DOI: 10.1107/S0907444909052925.
[56] M Falasca, SK Logan, VP Lehto, G Baccante. et al.(1998). Activation of phospholipase Cγ by PI 3-kinase-induced PH domain-mediated membrane targeting. The EMBO Journal.17:414-422. DOI: 10.1107/S0907444909052925.
[57] TH Charpentier, GL Waldo, MO Barrett, W Huang. et al.(2014). Membrane-induced allosteric control of phospholipase C-β isozymes. Journal of Biological Chemistry.289:29545-29557. DOI: 10.1107/S0907444909052925.
[58] E Sherman, VA Barr, RK Merrill, CK Regan. et al.(2016). Hierarchical nanostructure and synergy of multimolecular signalling complexes. Nature Communications.7. DOI: 10.1107/S0907444909052925.
[59] L Minichiello, AM Calella, DL Medina, T Bonhoeffer. et al.(2002). Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron.36:121-137. DOI: 10.1107/S0907444909052925.
[60] J Wang, H Sohn, G Sun, JD Milner. et al.(2014). The autoinhibitory C-terminal SH2 domain of phospholipase C-γ2 stabilizes B cell receptor signalosome assembly. Science Signaling.7. DOI: 10.1107/S0907444909052925.
[61] C Walliser, E Hermkes, A Schade, S Wiese. et al.(2016). The phospholipase Cγ2 mutants R665W and L845F identified in ibrutinib-resistant chronic lymphocytic leukemia patients are hypersensitive to the Rho GTPase Rac2 protein. Journal of Biological Chemistry.291:22136-22148. DOI: 10.1107/S0907444909052925.
[62] KL Everett, A Buehler, TD Bunney, A Margineanu. et al.(2011). Membrane environment exerts an important influence on Rac-mediated activation of phospholipase Cγ2. Molecular and Cellular Biology.31:1240-1251. DOI: 10.1107/S0907444909052925.
[63] K Kataoka, Y Nagata, A Kitanaka, Y Shiraishi. et al.(2015). Integrated molecular analysis of adult T cell leukemia/lymphoma. Nature Genetics.47:1304-1315. DOI: 10.1107/S0907444909052925.
[64] D Watanabe, S Hashimoto, M Ishiai, M Matsushita. et al.(2001). Four tyrosine residues in phospholipase C-γ2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. Journal of Biological Chemistry.276:38595-38601. DOI: 10.1107/S0907444909052925.
[65] C Walliser, M Retlich, R Harris, KL Everett. et al.(2008). Rac regulates its effector phospholipase Cγ2 through interaction with a split pleckstrin homology domain. Journal of Biological Chemistry.283:30351-30362. DOI: 10.1107/S0907444909052925.
[66] G Kadamur, EM Ross. (2013). Mammalian phospholipase C. Annual Review of Physiology.75:127-154. DOI: 10.1107/S0907444909052925.
[67] KG Peters, J Marie, E Wilson, HE Ives. et al.(1992). Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature.358:678-681. DOI: 10.1107/S0907444909052925.
[68] B Poulin, F Sekiya, SG Rhee. (2000). Differential roles of the Src homology 2 domains of phospholipase C-γ1 (PLC-γ1) in platelet-derived growth factor-induced activation of PLC-γ1 in intact cells. Journal of Biological Chemistry.275:6411-6416. DOI: 10.1107/S0907444909052925.
[69] NP Jones, J Peak, S Brader, SA Eccles. et al.(2005). PLCγ1 is essential for early events in integrin signalling required for cell motility. Journal of Cell Science.118:2695-2706. DOI: 10.1107/S0907444909052925.
[70] J Choi, G Goh, T Walradt, BS Hong. et al.(2015). Genomic landscape of cutaneous T cell lymphoma. Nature Genetics.47:1011-1019. DOI: 10.1107/S0907444909052925.
[71] . (2019). . DOI: 10.1107/S0907444909052925.
[72] AC da Silva Almeida, F Abate, H Khiabanian, E Martinez-Escala. et al.(2015). The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nature Genetics.47:1465-1470. DOI: 10.1107/S0907444909052925.
[73] CJ Serrano, L Graham, K DeBell, R Rawat. et al.(2005). A new tyrosine phosphorylation site in PLCγ1: the role of tyrosine 775 in immune receptor signaling. The Journal of Immunology.174:6233-6237. DOI: 10.1107/S0907444909052925.
[74] MA Martí-Renom, AC Stuart, A Fiser, R Sánchez. et al.(2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure.29:291-325. DOI: 10.1107/S0907444909052925.
[75] LC Pierce, R Salomon-Ferrer, C de Oliveira, F Augusto. et al.(2012). Routine access to millisecond time scale events with accelerated molecular dynamics. Journal of Chemical Theory and Computation.8:2997-3002. DOI: 10.1107/S0907444909052925.
[76] VB Chen, WB Arendall, JJ Headd, DA Keedy. et al.(2010). : all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography.66:12-21. DOI: 10.1107/S0907444909052925.
[77] T Piechulek, T Rehlen, C Walliser, P Vatter. et al.(2005). Isozyme-specific stimulation of phospholipase C-γ2 by Rac GTPases. Journal of Biological Chemistry.280:38923-38931. DOI: 10.1107/S0907444909052925.
[78] JA Maier, C Martinez, K Kasavajhala, L Wickstrom. et al.(2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation.11:3696-3713. DOI: 10.1107/S0907444909052925.
[79] TD Groesch, F Zhou, S Mattila, RL Geahlen. et al.(2006). Structural basis for the requirement of two phosphotyrosine residues in signaling mediated by Syk tyrosine kinase. Journal of Molecular Biology.356:1222-1236. DOI: 10.1107/S0907444909052925.
[80] A Gresset, SN Hicks, TK Harden, J Sondek. et al.(2010). Mechanism of phosphorylation-induced activation of phospholipase C-γ isozymes. Journal of Biological Chemistry.285:35836-35847. DOI: 10.1107/S0907444909052925.
[81] EM Schaeffer, J Debnath, G Yap, D McVicar. et al.(1999). Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science.284:638-641. DOI: 10.1107/S0907444909052925.
[82] L Magno, CB Lessard, M Martins, V Lang. et al.(2019). Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimer's Research & Therapy.11. DOI: 10.1107/S0907444909052925.
[83] PD Adams, PV Afonine, G Bunkóczi, VB Chen. et al.(2010). : a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography.66:213-221. DOI: 10.1107/S0907444909052925.
[84] DG Gibson, L Young, RY Chuang, JC Venter. et al.(2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods.6:343-345. DOI: 10.1107/S0907444909052925.
[85] W Huang, X Wang, S Endo-Streeter, M Barrett. et al.(2018). A membrane-associated, fluorogenic reporter for mammalian phospholipase C isozymes. Journal of Biological Chemistry.293:1728-1735. DOI: 10.1107/S0907444909052925.
[86] B Poulin, F Sekiya, SG Rhee. (2005). Intramolecular interaction between phosphorylated tyrosine-783 and the C-terminal Src homology 2 domain activates phospholipase C-γ1. PNAS.102:4276-4281. DOI: 10.1107/S0907444909052925.
[87] MI Wahl, S Nishibe, PG Suh, SG Rhee. et al.(1989). Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. PNAS.86:1568-1572. DOI: 10.1107/S0907444909052925.
[88] RA Gbadegesin, A Adeyemo, NJ Webb, LA Greenbaum. et al.(2015). and are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. Journal of the American Society of Nephrology : JASN.26:1701-1710. DOI: 10.1107/S0907444909052925.
[89] LA Humphries, C Dangelmaier, K Sommer, K Kipp. et al.(2004). Tec kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cγ Src homology 2-Src homology 3 linker. Journal of Biological Chemistry.279:37651-37661. DOI: 10.1107/S0907444909052925.
[90] GL Waldo, TK Ricks, SN Hicks, ML Cheever. et al.(2010). Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science.330:974-980. DOI: 10.1107/S0907444909052925.
[91] R Rodriguez, M Matsuda, O Perisic, J Bravo. et al.(2001). Tyrosine residues in phospholipase Cγ2 essential for the enzyme function in B-cell signaling. Journal of Biological Chemistry.276:47982-47992. DOI: 10.1107/S0907444909052925.
[92] AK Rouquette-Jazdanian, CL Sommers, RL Kortum, DK Morrison. et al.(2012). LAT-independent Erk activation via Bam32-PLC-γ1-Pak1 complexes: GTPase-independent Pak1 activation. Molecular Cell.48:298-312. DOI: 10.1107/S0907444909052925.