首页 » 文章 » 文章详细信息
Molecular Imaging Volume 18 ,2019-12-31
The Relationship Between IDH1 Mutation Status and Metabolic Imaging in Nonenhancing Supratentorial Diffuse Gliomas: A 11C-MET PET Study
Research Article
Nijiati Kudulaiti 1 , 2 Huiwei Zhang 3 Tianming Qiu 1 , 2 Junfeng Lu 1 , 2 Abudumijiti Aibaidula 1 , 2 Zhengwei Zhang 3 Yihui Guan 3 Dongxiao Zhuang 1 , 2
Show affiliations
Received 2019-4-15, accepted for publication 2019-11-17, Published 2019-12-31

Purpose: We evaluated the relationship between isocitrate dehydrogenase 1 (IDH1) mutation status and metabolic imaging in patients with nonenhancing supratentorial diffuse gliomas using 11C-methionine positron emission tomography (11C-MET PET). Materials and Methods: Between June 2012 and November 2017, we enrolled 86 (38 women and 48 men; mean age, 41.9 ± 13.1 years [range, 8-67 years]) patients with newly diagnosed supratentorial diffuse gliomas. All patients underwent preoperative 11C-MET PET. Tumor samples were obtained and immunohistochemically analyzed for IDH1 mutation status. Results: The mutant and wild-type IDH1 diffuse gliomas had significantly different mean maximum standardized uptake value values (2.73 [95% confidence interval, CI: 2.32-3.16] vs 3.85 [95% CI: 3.22-4.51], respectively; P = .004) and mean tumor-to-background ratio (1.90 [95% CI: 1.65-2.16] vs 2.59 [95% CI: 2.17-3.04], respectively; P = .007). Conclusions: 11C-methionine PET can noninvasively evaluate the IDH1 mutation status of patients with nonenhancing supratentorial diffuse gliomas.


IDH1;C-MET PET;glioma


© The Author(s) 2019
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).


1. Yihui Guan.PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China.guanyihui@hotmail.com
2. Dongxiao Zhuang.Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China; Institute of Neurosurgery, Fudan University, Shanghai, People’s Republic of China.ernestzdx@163.com


Nijiati Kudulaiti,Huiwei Zhang,Tianming Qiu,Junfeng Lu,Abudumijiti Aibaidula,Zhengwei Zhang,Yihui Guan,Dongxiao Zhuang. The Relationship Between IDH1 Mutation Status and Metabolic Imaging in Nonenhancing Supratentorial Diffuse Gliomas: A 11C-MET PET Study. Molecular Imaging ,Vol.18(2019)



[1] S Bette, J Gempt, C Delbridge, et al. Prognostic value of O-(2-[18F]-Fluoroethyl)-L-tyrosine-positron emission tomography imaging for histopathologic characteristics and progression-free survival in patients with low-grade Glioma. World Neurosurg. 2016;89:230–239. doi:10.1016/j.wneu.2016.01.085.
[2] A Verger, P Metellus, Q Sala, et al. IDH mutation is paradoxically associated with higher (18)F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur J Nucl Med Mol Imaging. 2017;44:1306–1311. doi:10.1007/s00259-017-3668-6.
[3] H Yan, DW Parsons, G Jin, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–773. doi:10.1056/NEJMoa0808710.
[4] A Verger, G Stoffels, EK Bauer, et al. Static and dynamic (18)F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45:443–451. doi:10.1007/s00259-017-3846-6.
[5] M Weller, SM Pfister, W Wick, et al. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol. 2013;14:e370–e379. doi:10.1016/S1470-2045(13)70168-2.
[6] DJ Brat, RG Verhaak, KD AldapeCancer Genome Atlas Research Network, , et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–2498. doi:10.1056/NEJMoa1402121.
[7] N Galldiks, M Unterrainer, N Judov, et al. Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro Oncol. 2019;21:1331–1338. doi:10.1093/neuonc/noz083.
[8] H Shishido, N Kawai, K Miyake, et al. Diagnostic value of 11C-methionine (MET) and 18F-fluorothymidine (FLT) positron emission tomography in recurrent high-grade gliomas; differentiation from treatment-induced tissue necrosis. Cancers. 2012;4:244–256. doi:10.3390/cancers4010244.
[9] LW Kracht, H Miletic, S Busch, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–7170. doi:10.1158/1078-0432.CCR-04-0262.
[10] MMJ Wijnenga, PJ French, HJ Dubbink, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological and molecular analysis. Neuro Oncol. 2017; 20. 103–112. doi:10.1093/neuonc/nox176.
[11] AL Cohen, SL Holmen, H Colman. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci. 2013;13:345. doi:10.1007/s11910-013-0345-4.
[12] D Capper, D Reuss, J Schittenhelm, et al. Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol. 2011;121:241–252. doi:10.1007/s00401-010-0770-2.
[13] A Verger, D Taieb, E Guedj. Is the information provided by amino acid PET radiopharmaceuticals clinically equivalent in gliomas? Eur J Nucl Med Mol Imaging. 2017;44:1408–1410. doi:10.1007/s00259-017-3710-8.
[14] FJ Rodriguez, MA Vizcaino, Lin MT Recent advances on the molecular pathology of glial neoplasms in children and adults. J Mol Diagn. 2016;18:620–634. doi:10.1016/j.jmoldx.2016.05.005.
[15] T Kato, J Shinoda, N Oka, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol. 2008;29:1867–1871. doi:10.3174/ajnr.A1242.
[16] M Sasaki, Y Kuwabara, T Yoshida, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med. 1998;25(9):1261–1269.
[17] S Kim, JK Chung, SH Im, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:52–59. doi:10.1007/s00259-004-1598-6.
[18] K Herholz, T Holzer, B Bauer, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–1322.
[19] B Pirotte, S Goldman, O Dewitte, et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg. 2006;104:238–253. doi:10.3171/jns.2006.104.2.238.
[20] M Matsuo, K Miwa, O Tanaka, et al. Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys. 2012;82:83–89. doi:10.1016/j.ijrobp.2010.09.020.
[21] Y Okita, M Nonaka, T Shofuda et al.(11)C-methinine uptake correlates with MGMT promoter methylation in nonenhancing gliomas. Clin Neurol Neurosurg. 2014;125:212–216. doi:10.1016/j.clineuro.2014.08.004.
[22] T Nojiri, T Nariai, M Aoyagi, et al. Contributions of biological tumor parameters to the incorporation rate of L: -[methyl-(11)C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol. 2009;93:233–241. doi:10.1007/s11060-008-9767-2.
[23] M Sanson, Y Marie, S Paris, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27:4150–4154. doi:10.1200/JCO.2009.21.9832.
[24] N Shinozaki, Y Uchino, K Yoshikawa, et al. Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg. 2011;114:1640–1647. doi:10.3171/2010.11.JNS10553.
[25] M Kameyama, Y Umeda-Kameyama. A kinetic solution for the paradoxical difference between F-Dopa and methionine. Eur J Nucl Med Mol Imaging. 2017;44:2328–2330. doi:10.1007/s00259-017-3796-z.
[26] P Metellus, C Colin, D Taieb, et al. IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neurooncol. 2011;105:591–600. doi:10.1007/s11060-011-0625-2.
[27] T Saito, T Maruyama, Y Muragaki, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol. 2013;34:85–91. doi:10.3174/ajnr.A3173.
[28] CL Appin, DJ Brat. Biomarker-driven diagnosis of diffuse gliomas. Mol Aspects Med. 2015;45:87–96. doi:10.1016/j.mam.2015.05.002.
[29] A Aibaidula, AK Chan, Z Shi, et al. Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol. 2017;19:1327–1337. doi:10.1093/neuonc/nox078.
[30] AW Glaudemans, RH Enting, MA Heesters, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–635. doi:10.1007/s00259-012-2295-5.
[31] S Ceyssens, K Van Laere, T de Groot, et al. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol. 2006;27(7):1432–1437.
[32] N Thon, M Kunz, L Lemke, et al. Dynamic 18F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int J Cancer. 2015;136:2132–2145. doi:10.1002/ijc.29259.
[33] J Beiko, D Suki, KR Hess, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16:81–91. doi:10.1093/neuonc/not159.
[34] QT Ostrom, H Gittleman, P Liao, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(suppl 4):iv1–63. doi:10.1093/neuonc/nou223.
[35] S Camelo-Piragua, S Kesari. Further understanding of the pathology of glioma: implications for the clinic. Expert Rev Neurother. 2016;16:1055–1065. doi:10.1080/14737175.2016.1194755.
[36] N Galldiks, LW Kracht, F Berthold, et al. [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol. 2010;96:231–239. doi:10.1007/s11060-009-9953-x.
[37] T Hatakeyama, N Kawai, Y Nishiyama, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35:2009–2017. doi:10.1007/s00259-008-0847-5.
[38] T Kawaguchi, Y Sonoda, I Shibahara, et al. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol. 2016;129:505–514. doi:10.1007/s11060-016-2201-2.
[39] DO Kamson. Hypometabolic gliomas on FET-PET-is there an inverted U-curve for survival? Neuro Oncol. 2019;21:1221–1222. doi:10.1093/neuonc/noz122.
[40] G Moulin-Romsee, E D’Hondt, T de Groot, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007;34:2082–2087. doi:10.1007/s00259-007-0557-4.
[41] N Galldiks, A Verger, T Zaragori, et al. Comment on “Hypometabolic gliomas on FET-PET—Is there an inverted U-curve for survival?”, Kamson 2019, Neuro-Oncology. Neuro Oncol. 2019. doi:10.1093/neuonc/noz173.
[42] T Kato, J Shinoda, N Nakayama, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29:1176–1182. doi:10.3174/ajnr.A1008.
[43] O De Witte, I Goldberg, D Wikler, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–750. doi:10.3171/jns.2001.95.5.0746.
[44] N Sadeghi, I Salmon, BN Tang, et al. Correlation between dynamic susceptibility contrast perfusion MRI and methionine metabolism in brain gliomas: preliminary results. J Magn Reson Imaging. 2006;24:989–994. doi:10.1002/jmri.20757.
[45] DN Louis, A Perry, G Reifenberger, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–820. doi:10.1007/s00401-016-1545-1.
[46] JE Eckel-Passow, DH Lachance, AM Molinaro, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372:2499–2508. doi:10.1056/NEJMoa1407279.
[47] E Lopci, M Riva, L Olivari, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–1164. doi:10.1007/s00259-017-3618-3.