首页 » 文章 » 文章详细信息
eLife Volume 8 ,2019-11-19
Single cell transcriptome atlas of the Drosophila larval brain
Clarisse Brunet Avalos 1 G Larisa Maier 1 Rémy Bruggmann 2 Simon G Sprecher 1
Show affiliations
Received 2019-07-19, accepted for publication 2019-11-19, Published 2019-11-19

Cell diversity of the brain and how it is affected by starvation, remains largely unknown. Here, we introduce a single cell transcriptome atlas of the entire Drosophila first instar larval brain. We first assigned cell-type identity based on known marker genes, distinguishing five major groups: neural progenitors, differentiated neurons, glia, undifferentiated neurons and non-neural cells. All major classes were further subdivided into multiple subtypes, revealing biological features of various cell-types. We further assessed transcriptional changes in response to starvation at the single-cell level. While after starvation the composition of the brain remains unaffected, transcriptional profile of several cell clusters changed. Intriguingly, different cell-types show very distinct responses to starvation, suggesting the presence of cell-specific programs for nutrition availability. Establishing a single-cell transcriptome atlas of the larval brain provides a powerful tool to explore cell diversity and assess genetic profiles from developmental, functional and behavioral perspectives.


D. melanogaster;nervous system;cell diversity;brain;larva;Drosophila;single cell transcriptome


© 2019, Brunet Avalos et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Clarisse Brunet Avalos,G Larisa Maier,Rémy Bruggmann,Simon G Sprecher. Single cell transcriptome atlas of the Drosophila larval brain. eLife ,Vol.8(2019)



[1] L McInnes, J Healy, J Melville. (2018). UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. DOI: 10.1371/journal.pgen.1006613.
[2] M Monastirioti, CE Linn, K White. (1996). Characterization of hydroxylase gene and isolation of mutant flies lacking octopamine. The Journal of Neuroscience.16:3900-3911. DOI: 10.1371/journal.pgen.1006613.
[3] DR Nässel, LE Enell, JG Santos, C Wegener. et al.(2008). A large population of diverse neurons in the drosophilacentral nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neuroscience.9. DOI: 10.1371/journal.pgen.1006613.
[4] JM Chell, AH Brand. (2010). Nutrition-responsive Glia control exit of neural stem cells from quiescence. Cell.143:1161-1173. DOI: 10.1371/journal.pgen.1006613.
[5] J Chen, W Reiher, C Hermann-Luibl, A Sellami. et al.(2016). Allatostatin A signalling in Drosophila regulates feeding and sleep and is modulated by PDF. PLOS Genetics.12. DOI: 10.1371/journal.pgen.1006613.
[6] C Helfrich-Förster. (1997). Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila Melanogaster. The Journal of Comparative Neurology.380:335-354. DOI: 10.1371/journal.pgen.1006613.
[7] R Satija, JA Farrell, D Gennert, AF Schier. et al.(2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology.33:495-502. DOI: 10.1371/journal.pgen.1006613.
[8] Y Huang, FS Ng, FR Jackson. (2015). Comparison of larval and adult Drosophila astrocytes reveals Stage-Specific gene expression profiles. G3: Genes|Genomes|Genetics.5:551-558. DOI: 10.1371/journal.pgen.1006613.
[9] T Roeder. (2005). Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology.50:447-477. DOI: 10.1371/journal.pgen.1006613.
[10] HA Johard, LE Enell, E Gustafsson, P Trifilieff. et al.(2008). Intrinsic neurons of mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. The Journal of Comparative Neurology.507:1479-1496. DOI: 10.1371/journal.pgen.1006613.
[11] K Scott, R Brady, A Cravchik, P Morozov. et al.(2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell.104:661-673. DOI: 10.1371/journal.pgen.1006613.
[12] N Li, Q Liu, Y Xiong, J Yu. et al.(2019). Headcase and unkempt regulate tissue growth and cell cycle progression in response to nutrient restriction. Cell Reports.26:733-747. DOI: 10.1371/journal.pgen.1006613.
[13] LY Cheng, AP Bailey, SJ Leevers, TJ Ragan. et al.(2011). Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell.146:435-447. DOI: 10.1371/journal.pgen.1006613.
[14] JA Malin, C Desplan. (2018). Stem cell tumors: cherub versus brat. eLife.7. DOI: 10.1371/journal.pgen.1006613.
[15] C Martelli, U Pech, S Kobbenbring, D Pauls. et al.(2017). SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Reports.20:464-478. DOI: 10.1371/journal.pgen.1006613.
[16] B Collins, EA Kane, DC Reeves, MH Akabas. et al.(2012). Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron.74:706-718. DOI: 10.1371/journal.pgen.1006613.
[17] JR Conway, A Lex, N Gehlenborg. (2017). UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics.33:2938-2940. DOI: 10.1371/journal.pgen.1006613.
[18] N Konstantinides, K Kapuralin, C Fadil, L Barboza. et al.(2018). Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell.174:622-635. DOI: 10.1371/journal.pgen.1006613.
[19] T Kunz, KF Kraft, GM Technau, R Urbach. et al.(2012). Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages. Development.139:2510-2522. DOI: 10.1371/journal.pgen.1006613.
[20] V Croset, CD Treiber, S Waddell. (2018). Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife.7. DOI: 10.1371/journal.pgen.1006613.
[21] P Spéder, AH Brand. (2014). Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Developmental Cell.30:309-321. DOI: 10.1371/journal.pgen.1006613.
[22] L Landskron, V Steinmann, F Bonnay, TR Burkard. et al.(2018). The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells. eLife.7. DOI: 10.1371/journal.pgen.1006613.
[23] T Stuart, A Butler, P Hoffman, C Hafemeister. et al.(2018). Comprehensive integration of single cell data. bioRxiv. DOI: 10.1371/journal.pgen.1006613.
[24] KS Lee, KH You, JK Choo, YM Han. et al.(2004). short neuropeptide F regulates food intake and body size. Journal of Biological Chemistry.279:50781-50789. DOI: 10.1371/journal.pgen.1006613.
[25] R Sousa-Nunes, LL Yee, AP Gould. (2011). Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature.471:508-512. DOI: 10.1371/journal.pgen.1006613.
[26] A Avet-Rochex, N Carvajal, CP Christoforou, K Yeung. et al.(2014). Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLOS Genetics.10. DOI: 10.1371/journal.pgen.1006613.
[27] M Tiebe, M Lutz, A De La Garza, T Buechling. et al.(2015). REPTOR and REPTOR-BP regulate organismal metabolism and transcription downstream of TORC1. Developmental Cell.33:272-284. DOI: 10.1371/journal.pgen.1006613.
[28] D Pauls, M Selcho, N Gendre, RF Stocker. et al.(2010). Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. Journal of Neuroscience.30:10655-10666. DOI: 10.1371/journal.pgen.1006613.
[29] L Otsuki, AH Brand. (2018). Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science.360:99-102. DOI: 10.1371/journal.pgen.1006613.
[30] ES Brooks, CL Greer, R Romero-Calderón, CN Serway. et al.(2011). A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system. Neuron.72:316-329. DOI: 10.1371/journal.pgen.1006613.
[31] A Butler, P Hoffman, P Smibert, E Papalexi. et al.(2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology.36:411-420. DOI: 10.1371/journal.pgen.1006613.
[32] A Regev, SA Teichmann, ES Lander, I Amit. et al.(2017). The human cell atlas. eLife.6. DOI: 10.1371/journal.pgen.1006613.
[33] K Davie, J Janssens, D Koldere, M De Waegeneer. et al.(2018). A Single-Cell transcriptome atlas of the aging Drosophila brain. Cell.174:982-998. DOI: 10.1371/journal.pgen.1006613.
[34] CE Vaaga, M Borisovska, GL Westbrook. (2014). Dual-transmitter neurons: functional implications of co-release and co-transmission. Current Opinion in Neurobiology.29:25-32. DOI: 10.1371/journal.pgen.1006613.
[35] A DiAntonio, KD Parfitt, TL Schwarz. (1993). Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell.73:1281-1290. DOI: 10.1371/journal.pgen.1006613.
[36] RL Davis. (2011). Traces of Drosophila memory. Neuron.70:8-19. DOI: 10.1371/journal.pgen.1006613.
[37] IV Andrade, N Riebli, BM Nguyen, JJ Omoto. et al.(2019). Developmentally arrested precursors of pontine neurons establish an embryonic blueprint of the Drosophila central complex. Current Biology.29:412-425. DOI: 10.1371/journal.pgen.1006613.
[38] ME Yurgel, P Kakad, M Zandawala, DR Nässel. et al.(2019). A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. PLOS Biology.17. DOI: 10.1371/journal.pgen.1006613.
[39] DR Nässel, J Vanden Broeck. (2016). Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences.73:271-290. DOI: 10.1371/journal.pgen.1006613.
[40] I Zinke, CS Schütz, JD Katzenberger, M Bauer. et al.(2002). Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. The EMBO Journal.21:6162-6173. DOI: 10.1371/journal.pgen.1006613.
[41] WS Neckameyer, WG Quinn. (1989). Isolation and characterization of the gene for Drosophila tyrosine hydroxylase. Neuron.2:1167-1175. DOI: 10.1371/journal.pgen.1006613.
[42] CC Dibble, BD Manning. (2013). Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biology.15:555-564. DOI: 10.1371/journal.pgen.1006613.
[43] KC Abruzzi, A Zadina, W Luo, E Wiyanto. et al.(2017). RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLOS Genetics.13. DOI: 10.1371/journal.pgen.1006613.
[44] DR Nässel. (2018). Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in. Frontiers in Cellular Neuroscience.12. DOI: 10.1371/journal.pgen.1006613.
[45] DW Allan, S Thor. (2015). Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley Interdisciplinary Reviews: Developmental Biology.4:505-528. DOI: 10.1371/journal.pgen.1006613.
[46] JN Noordermeer, CC Kopczynski, RD Fetter, KS Bland. et al.(1998). Wrapper, a novel member of the ig superfamily, is expressed by midline Glia and is required for them to ensheath commissural axons in Drosophila. Neuron.21:991-1001. DOI: 10.1371/journal.pgen.1006613.
[47] M Gáliková, M Diesner, P Klepsatel, P Hehlert. et al.(2015). Energy homeostasis control in Adipokinetic Hormone Mutants. Genetics.201:665-683. DOI: 10.1371/journal.pgen.1006613.
[48] B Egger, JM Chell, AH Brand. (2008). Insights into neural stem cell biology from flies. Philosophical Transactions of the Royal Society B: Biological Sciences.363:39-56. DOI: 10.1371/journal.pgen.1006613.
[49] B Egger, KS Gold, AH Brand. (2010). Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development.137:2981-2987. DOI: 10.1371/journal.pgen.1006613.