首页 » 文章 » 文章详细信息
Journal of Immunology Research Volume 2019 ,2019-10-03
Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity
Review Article
Li Wang 1 Limeng Zhu 2 Song Qin 3
Show affiliations
DOI:10.1155/2019/4735040
Received 2019-05-31, accepted for publication 2019-08-05, Published 2019-08-05
PDF
摘要

The mammalian intestine harbors a remarkable number of microbes and their components and metabolites, which are fundamental for the instigation and development of the host immune system. The intestinal innate and adaptive immunity coordinate and interact with the symbionts contributing to the intestinal homeostasis through establishment of a mutually beneficial relationship by tolerating to symbiotic microbiota and retaining the ability to exert proinflammatory response towards invasive pathogens. Imbalance between the intestinal immune system and commensal organisms disrupts the intestinal microbiological homeostasis, leading to microbiota dysbiosis, compromised integrity of the intestinal barrier, and proinflammatory immune responses towards symbionts. This, in turn, exacerbates the degree of the imbalance. Intestinal adaptive immunity plays a critical role in maintaining immune tolerance towards symbionts and the integrity of intestinal barrier, while the innate immune system regulates the adaptive immune responses to intestinal commensal bacteria. In this review, we will summarize recent findings on the effects and mechanisms of gut microbiota on intestinal adaptive immunity and the plasticity of several immune cells under diverse microenvironmental settings.

授权许可

Copyright © 2019 Li Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Li Wang.Hepatology Department, Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu District, Yantai 264001, China.liliwang2200@163.com
2. Song Qin.Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai 264003, China, cas.cn.sqin@yic.ac.cn

推荐引用方式

Li Wang,Limeng Zhu,Song Qin. Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. Journal of Immunology Research ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Q. Zhao, C. O. Elson. (2018). Adaptive immune education by gut microbiota antigens. Immunology.154(1):28-37. DOI: 10.1038/nri.2017.7.
[2] T. Feng, C. O. Elson. (2011). Adaptive immunity in the host-microbiota dialog. Mucosal Immunology.4(1):15-21. DOI: 10.1038/nri.2017.7.
[3] A. Rizzo, M. di Giovangiulio, C. Stolfi, E. Franzè. et al.(2018). RORt-expressing Tregs drive the growth of colitis-associated colorectal cancer by controlling IL6 in dendritic cells. Cancer Immunology Research.6(9):1082-1092. DOI: 10.1038/nri.2017.7.
[4] M. S. Ladinsky, L. P. Araujo, X. Zhang, J. Veltri. et al.(2019). Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science.363(6431, article eaat4042). DOI: 10.1038/nri.2017.7.
[5] B. H. Yang, S. Hagemann, P. Mamareli, U. Lauer. et al.(2016). Foxp3 T cells expressing RORt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunology.9(2):444-457. DOI: 10.1038/nri.2017.7.
[6] D. Allman, J. R. Wilmore, B. T. Gaudette. (2019). The continuing story of T-cell independent antibodies. Immunological Reviews.288(1):128-135. DOI: 10.1038/nri.2017.7.
[7] M. Bemark, P. Boysen, N. Y. Lycke. (2012). Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Annals of the New York Academy of Sciences.1247(1):97-116. DOI: 10.1038/nri.2017.7.
[8] C. Neumann, J. Blume, U. Roy, P. P. Teh. et al.(2019). c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis. Nature Immunology.20(4):471-481. DOI: 10.1038/nri.2017.7.
[9] W. Wu, M. Sun, F. Chen, A. T. Cao. et al.(2017). Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunology.10(4):946-956. DOI: 10.1038/nri.2017.7.
[10] Z. Al Nabhani, S. Dulauroy, R. Marques, C. Cousu. et al.(2019). A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity.50(5):1276-1288.e5. DOI: 10.1038/nri.2017.7.
[11] M. Kespohl, N. Vachharajani, M. Luu, H. Harb. et al.(2017). The microbial metabolite butyrate induces expression of Th1-associated factors in CD4 T Cells. Frontiers in Immunology.8, article 1036. DOI: 10.1038/nri.2017.7.
[12] J. S. Park, J. W. Choi, J. Jhun, J. Y. Kwon. et al.(2018). improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and Treg cell balance and fibrosis development. Journal of Medicinal Food.21(3):215-224. DOI: 10.1038/nri.2017.7.
[13] E. Sefik, N. Geva-Zatorsky, S. Oh, L. Konnikova. et al.(2015). Individual intestinal symbionts induce a distinct population of ROR regulatory T cells. Science.349(6251):993-997. DOI: 10.1038/nri.2017.7.
[14] L. Sun, J. Fu, Y. Zhou. (2017). Metabolism controls the balance of Th17/T-regulatory cells. Frontiers in Immunology.8, article 1632. DOI: 10.1038/nri.2017.7.
[15] M. Kim, Y. Qie, J. Park, C. H. Kim. et al.(2016). Gut microbial metabolites fuel host antibody responses. Cell Host & Microbe.20(2):202-214. DOI: 10.1038/nri.2017.7.
[16] G. Oldenhove, N. Bouladoux, E. A. Wohlfert, J. A. Hall. et al.(2009). Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity.31(5):772-786. DOI: 10.1038/nri.2017.7.
[17] K. M. Severson, M. Mallozzi, A. Driks, K. L. Knight. et al.(2010). B cell development in GALT: role of bacterial superantigen-like molecules. Journal of Immunology.184(12):6782-6789. DOI: 10.1038/nri.2017.7.
[18] A. Reboldi, J. G. Cyster. (2016). Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunological Reviews.271(1):230-245. DOI: 10.1038/nri.2017.7.
[19] A. Reboldi, T. I. Arnon, L. B. Rodda, A. Atakilit. et al.(2016). IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science.352(6287, article aaf4822). DOI: 10.1038/nri.2017.7.
[20] L. Jones, W. Q. Ho, S. Ying, L. Ramakrishna. et al.(2016). A subpopulation of high IL-21-producing CD4 T cells in Peyer’s Patches is induced by the microbiota and regulates germinal centers. Scientific Reports.6(1, article 30784). DOI: 10.1038/nri.2017.7.
[21] L. Han, H. Jin, L. Zhou, X. Zhang. et al.(2018). Intestinal microbiota at engraftment influence acute graft-versus-host disease via the Treg/Th17 balance in allo-HSCT recipients. Frontiers in Immunology.9. DOI: 10.1038/nri.2017.7.
[22] E. Bettelli, Y. Carrier, W. Gao, T. Korn. et al.(2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.441(7090):235-238. DOI: 10.1038/nri.2017.7.
[23] H. Kayama, K. Takeda. (2012). Regulation of intestinal homeostasis by innate and adaptive immunity. International Immunology.24(11):673-680. DOI: 10.1038/nri.2017.7.
[24] J. L. Round, S. K. Mazmanian. (2010). Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America.107(27):12204-12209. DOI: 10.1038/nri.2017.7.
[25] M. Romano, S. L. Tung, L. A. Smyth, G. Lombardi. et al.(2017). Treg therapy in transplantation: a general overview. Transplant International.30(8):745-753. DOI: 10.1038/nri.2017.7.
[26] J. Mikulic, S. Longet, L. Favre, J. Benyacoub. et al.(2017). Secretory IgA in complex with potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-. Cellular & Molecular Immunology.14(6):546-556. DOI: 10.1038/nri.2017.7.
[27] J. Park, M. Kim, S. G. Kang, A. H. Jannasch. et al.(2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology.8(1):80-93. DOI: 10.1038/nri.2017.7.
[28] M. Džunková, A. Moya, J. F. Vázquez-Castellanos, A. Artacho. et al.(2016). Active and secretory IgA-coated bacterial fractions elucidate dysbiosis in infection. mSphere.1(3, article e00101-16). DOI: 10.1038/nri.2017.7.
[29] M. Viladomiu, C. Kivolowitz, A. Abdulhamid, B. Dogan. et al.(2017). IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote T17-dependent inflammation. Science Translational Medicine.9(376, article eaaf9655). DOI: 10.1038/nri.2017.7.
[30] J. Diana, I. C. Moura, C. Vaugier, A. Gestin. et al.(2013). Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. Journal of Immunology.191(5):2335-2343. DOI: 10.1038/nri.2017.7.
[31] G. J. Britton, E. J. Contijoch, I. Mogno, O. H. Vennaro. et al.(2019). Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORt regulatory T cells and exacerbate colitis in mice. Immunity.50(1):212-224.e4. DOI: 10.1038/nri.2017.7.
[32] B. Stockinger, S. Omenetti. (2017). The dichotomous nature of T helper 17 cells. Nature Reviews. Immunology.17(9):535-544. DOI: 10.1038/nri.2017.7.
[33] P. Kraj, L. Ignatowicz. (2018). The mechanisms shaping the repertoire of CD4(+) Foxp3(+) regulatory T cells. Immunology.153(3):290-296. DOI: 10.1038/nri.2017.7.
[34] T. Sujino, M. London, D. P. Hoytema van Konijnenburg, T. Rendon. et al.(2016). Tissue adaptation of regulatory and intraepithelial CD4 T cells controls gut inflammation. Science.352(6293):1581-1586. DOI: 10.1038/nri.2017.7.
[35] K. Hirota, J. E. Turner, M. Villa, J. H. Duarte. et al.(2013). Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nature Immunology.14(4):372-379. DOI: 10.1038/nri.2017.7.
[36] L. Moro-Sibilot, S. This, P. Blanc, A. Sanlaville. et al.(2016). Plasmacytoid dendritic cells are dispensable for noninfectious intestinal IgA responses in vivo. European Journal of Immunology.46(2):354-359. DOI: 10.1038/nri.2017.7.
[37] H. Tezuka, Y. Abe, J. Asano, T. Sato. et al.(2011). Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity.34(2):247-257. DOI: 10.1038/nri.2017.7.
[38] K. Atarashi, T. Tanoue, K. Oshima, W. Suda. et al.(2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature.500(7461):232-236. DOI: 10.1038/nri.2017.7.
[39] A. J. Macpherson, T. Uhr. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science.303(5664):1662-1665. DOI: 10.1038/nri.2017.7.
[40] K. Atarashi, T. Tanoue, T. Shima, A. Imaoka. et al.(2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science.331(6015):337-341. DOI: 10.1038/nri.2017.7.
[41] C. T. Weaver, C. O. Elson, L. A. Fouser, J. K. Kolls. et al.(2013). The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annual Review of Pathology.8(1):477-512. DOI: 10.1038/nri.2017.7.
[42] K. L. Edelblum, G. Singh, M. A. Odenwald, A. Lingaraju. et al.(2015). intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology.148(7):1417-1426. DOI: 10.1038/nri.2017.7.
[43] A. Rizzo, V. de Mare, C. Rocchi, C. Stolfi. et al.(2014). Smad7 induces plasticity in tumor-infiltrating Th17 cells and enables TNF-alpha-mediated killing of colorectal cancer cells. Carcinogenesis.35(7):1536-1546. DOI: 10.1038/nri.2017.7.
[44] M. A. Oberhardt, R. Zarecki, S. Gronow, E. Lang. et al.(2015). Harnessing the landscape of microbial culture media to predict new organism–media pairings. Nature Communications.6(1, article 8493). DOI: 10.1038/nri.2017.7.
[45] A. S. Ismail, K. M. Severson, S. Vaishnava, C. L. Behrendt. et al.(2011). intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proceedings of the National Academy of Sciences of the United States of America.108(21):8743-8748. DOI: 10.1038/nri.2017.7.
[46] M. Luu, K. Weigand, F. Wedi, C. Breidenbend. et al.(2018). Regulation of the effector function of CD8 T cells by gut microbiota-derived metabolite butyrate. Scientific Reports.8(1, article 14430). DOI: 10.1038/nri.2017.7.
[47] L. Cervantes-Barragan, J. N. Chai, M. D. Tianero, B. di Luccia. et al.(2017). induces gut intraepithelial CD4CD8 T cells. Science.357(6353):806-810. DOI: 10.1038/nri.2017.7.
[48] M. Rajpoot, A. K. Sharma, A. Sharma, G. K. Gupta. et al.(2018). Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Seminars in Cancer Biology.52:1-8. DOI: 10.1038/nri.2017.7.
[49] J. T. Lau, F. J. Whelan, I. Herath, C. H. Lee. et al.(2016). Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Medicine.8(1):72. DOI: 10.1038/nri.2017.7.
[50] W. Hu, C. Pasare. (2013). Location, location, location: tissue-specific regulation of immune responses. Journal of Leukocyte Biology.94(3):409-421. DOI: 10.1038/nri.2017.7.
[51] Y. Yang, M. B. Torchinsky, M. Gobert, H. Xiong. et al.(2014). Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature.510(7503):152-156. DOI: 10.1038/nri.2017.7.
[52] C. Wu, R. B. Sartor, K. Huang, S. L. Tonkonogy. et al.(2016). Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling. Immunology.148(3):304-314. DOI: 10.1038/nri.2017.7.
[53] J. Geginat, M. Paroni, I. Kastirr, P. Larghi. et al.(2016). Reverse plasticity: TGF- and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut. European Journal of Immunology.46(10):2306-2310. DOI: 10.1038/nri.2017.7.
[54] M. Zhao, Y. Tan, Q. Peng, C. Huang. et al.(2018). IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nature Communications.9(1). DOI: 10.1038/nri.2017.7.
[55] K. Atarashi, T. Tanoue, M. Ando, N. Kamada. et al.(2015). Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell.163(2):367-380. DOI: 10.1038/nri.2017.7.
[56] N. P. Semenkovich, J. D. Planer, P. P. Ahern, N. W. Griffin. et al.(2016). Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proceedings of the National Academy of Sciences.113(51):14805-14810. DOI: 10.1038/nri.2017.7.
[57] D. T. Riglar, P. A. Silver. (2018). Engineering bacteria for diagnostic and therapeutic applications. Nature Reviews. Microbiology.16(4):214-225. DOI: 10.1038/nri.2017.7.
[58] D. Rojo, C. Méndez-García, B. A. Raczkowska, R. Bargiela. et al.(2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews.41(4):453-478. DOI: 10.1038/nri.2017.7.
[59] I. Ekmekciu, E. von Klitzing, C. Neumann, P. Bacher. et al.(2017). Fecal microbiota transplantation, commensal Escherichia coli and Lactobacillus johnsonii strains differentially restore intestinal and systemic adaptive immune cell populations following broad-spectrum antibiotic treatment. Frontiers in Microbiology.8, article 2430. DOI: 10.1038/nri.2017.7.
[60] Y. D. Ren, Z. S. Ye, L. Z. Yang, L. X. Jin. et al.(2017). Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology.65(5):1765-1768. DOI: 10.1038/nri.2017.7.
[61] D. Olivares-Villagomez, L. Van Kaer. (2018). Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier. Trends in Immunology.39(4):264-275. DOI: 10.1038/nri.2017.7.
[62] T. Tanoue, S. Morita, D. R. Plichta, A. N. Skelly. et al.(2019). A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature.565(7741):600-605. DOI: 10.1038/nri.2017.7.
[63] I. Ekmekciu, E. von Klitzing, U. Fiebiger, C. Neumann. et al.(2017). The probiotic compound VSL#3 modulates mucosal, peripheral, and systemic immunity following murine broad-spectrum antibiotic treatment. Frontiers in Cellular and Infection Microbiology.7, article 167. DOI: 10.1038/nri.2017.7.
[64] J. Jung, C. D. Surh, Y. J. Lee. (2019). Microbial colonization at early life promotes the development of diet-induced CD8 intraepithelial T cells. Molecules and Cells.42(4):313-320. DOI: 10.1038/nri.2017.7.
[65] J. Li, A. L. Doty, Y. Tang, D. Berrie. et al.(2017). Enrichment of IL‐17AIFN‐ and IL‐22IFN‐ T cell subsets is associated with reduction of NKp44ILC3s in the terminal ileum of Crohn’s disease patients. Clinical and Experimental Immunology.190(1):143-153. DOI: 10.1038/nri.2017.7.
[66] Y. Cao, Q. Yang, H. Deng, J. Tang. et al.(2019). Transcriptional factor ATF3 protects against colitis by regulating follicular helper T cells in Peyer’s patches. Proceedings of the National Academy of Sciences of the United States of America.116(13):6286-6291. DOI: 10.1038/nri.2017.7.
[67] Y. S. Zhang, D. E. Xin, Z. Wang, X. Song. et al.(2019). STAT4 activation by leukemia inhibitory factor confers a therapeutic effect on intestinal inflammation. The EMBO Journal.38(6, article e99595). DOI: 10.1038/nri.2017.7.
[68] R. Zhang, C. F. Qi, Y. Hu, Y. Shan. et al.(2019). T follicular helper cells restricted by IRF8 contribute to T cell-mediated inflammation. Journal of Autoimmunity.96:113-122. DOI: 10.1038/nri.2017.7.
[69] N. W. Palm, M. R. de Zoete, T. W. Cullen, N. A. Barry. et al.(2014). Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell.158(5):1000-1010. DOI: 10.1038/nri.2017.7.
[70] B. Chen, X. Ni, R. Sun, B. Zeng. et al.(2018). Commensal bacteria-dependent CD8 T cells in the intestinal epithelium produce antimicrobial peptides. Frontiers in Immunology.9, article 1065. DOI: 10.1038/nri.2017.7.
[71] C. Y. Chiu, Y. L. Chan, M. H. Tsai, C. J. Wang. et al.(2019). Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organization Journal.12(3, article 100021). DOI: 10.1038/nri.2017.7.
[72] V. Gopalakrishnan, C. N. Spencer, L. Nezi, A. Reuben. et al.(2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science.359(6371):97-103. DOI: 10.1038/nri.2017.7.
[73] C. G. Hurtado, F. Wan, F. Housseau, C. L. Sears. et al.(2018). Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology.155(6):1706-1715. DOI: 10.1038/nri.2017.7.
[74] S. H. Wong, L. Zhao, X. Zhang, G. Nakatsu. et al.(2017). Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology.153(6):1621-1633.e6. DOI: 10.1038/nri.2017.7.
[75] K. A. Kuhn, H. M. Schulz, E. H. Regner, E. L. Severs. et al.(2018). Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunology.11(2):357-368. DOI: 10.1038/nri.2017.7.
[76] Q. N. Nguyen, J. E. Himes, D. R. Martinez, S. R. Permar. et al.(2016). The impact of the gut microbiota on humoral immunity to pathogens and vaccination in early infancy. PLOS Pathogens.12(12, article e1005997). DOI: 10.1038/nri.2017.7.
[77] A. N. Skelly, Y. Sato, S. Kearney, K. Honda. et al.(2019). Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews. Immunology.19(5):305-323. DOI: 10.1038/nri.2017.7.
[78] A. Ueno, L. Jeffery, T. Kobayashi, T. Hibi. et al.(2018). Th17 plasticity and its relevance to inflammatory bowel disease. Journal of Autoimmunity.87(3):38-49. DOI: 10.1038/nri.2017.7.
[79] J. Yi, J. Jung, D. Han, C. D. Surh. et al.(2019). Segmented filamentous bacteria induce divergent populations of antigen-specific CD4 T cells in the small intestine. Molecules and Cells.42(3):228-236. DOI: 10.1038/nri.2017.7.
[80] N. Geva-Zatorsky, E. Sefik, L. Kua, L. Pasman. et al.(2017). Mining the human gut microbiota for immunomodulatory organisms. Cell.168(5):928-943.e11. DOI: 10.1038/nri.2017.7.
[81] S. Roy, G. Trinchieri. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews. Cancer.17(5):271-285. DOI: 10.1038/nri.2017.7.
[82] M. Meisel, T. Mayassi, H. Fehlner-Peach, J. C. Koval. et al.(2017). Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. The ISME Journal.11(1):15-30. DOI: 10.1038/nri.2017.7.
[83] T. Xu, K. M. Stewart, X. Wang, K. Liu. et al.(2017). Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature.548(7666):228-233. DOI: 10.1038/nri.2017.7.
[84] F. Andris, S. Denanglaire, M. Anciaux, M. Hercor. et al.(2017). The transcription factor c-Maf promotes the differentiation of follicular helper T cells. Frontiers in Immunology.8:480. DOI: 10.1038/nri.2017.7.
[85] L. Chen, M. Sun, W. Wu, W. Yang. et al.(2019). Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflammatory Bowel Diseases.25(9):1450-1461. DOI: 10.1038/nri.2017.7.
[86] P. T. Sage, A. H. Sharpe. (2016). T follicular regulatory cells. Immunological Reviews.271(1):246-259. DOI: 10.1038/nri.2017.7.
[87] F. Teng, C. N. Klinger, K. M. Felix, C. P. Bradley. et al.(2016). Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity.44(4):875-888. DOI: 10.1038/nri.2017.7.
[88] A. M. Roche, A. L. Richard, J. T. Rahkola, E. N. Janoff. et al.(2015). Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunology.8(1):176-185. DOI: 10.1038/nri.2017.7.
[89] O. Pabst. (2012). New concepts in the generation and functions of IgA. Nature Reviews. Immunology.12(12):821-832. DOI: 10.1038/nri.2017.7.
[90] A. J. Macpherson, B. Yilmaz, J. P. Limenitakis, S. C. Ganal-Vonarburg. et al.(2018). IgA function in relation to the intestinal microbiota. Annual Review of Immunology.36(1):359-381. DOI: 10.1038/nri.2017.7.
[91] W. W. Agace, K. D. McCoy. (2017). Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity.46(4):532-548. DOI: 10.1038/nri.2017.7.
[92] C. Gunther, C. Josenhans, J. Wehkamp. (2016). Crosstalk between microbiota, pathogens and the innate immune responses. International Journal of Medical Microbiology.306(5):257-265. DOI: 10.1038/nri.2017.7.
[93] A. Sivan, L. Corrales, N. Hubert, J. B. Williams. et al.(2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science.350(6264):1084-1089. DOI: 10.1038/nri.2017.7.
[94] K. Honda, D. R. Littman. (2016). The microbiota in adaptive immune homeostasis and disease. Nature.535(7610):75-84. DOI: 10.1038/nri.2017.7.
[95] J. M. Pitt, M. Vetizou, N. Waldschmitt, G. Kroemer. et al.(2016). Fine-tuning cancer immunotherapy: optimizing the gut microbiome. Cancer Research.76(16):4602-4607. DOI: 10.1038/nri.2017.7.
[96] M. Proietti, L. Perruzza, D. Scribano, G. Pellegrini. et al.(2019). ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nature Communications.10(1):250. DOI: 10.1038/nri.2017.7.
[97] B. Routy, E. Le Chatelier, L. Derosa, C. P. M. Duong. et al.(2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science.359(6371):91-97. DOI: 10.1038/nri.2017.7.
[98] L. Perruzza, G. Gargari, M. Proietti, B. Fosso. et al.(2017). T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Reports.18(11):2566-2575. DOI: 10.1038/nri.2017.7.
[99] D. Bouskra, C. Brézillon, M. Bérard, C. Werts. et al.(2008). Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature.456(7221):507-510. DOI: 10.1038/nri.2017.7.
[100] C. Moon, M. T. Baldridge, M. A. Wallace, C. A. D. Burnham. et al.(2015). Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature.521(7550):90-93. DOI: 10.1038/nri.2017.7.
[101] M. Buettner, M. Lochner. (2016). Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Frontiers in Immunology.7:342. DOI: 10.1038/nri.2017.7.
[102] A. M. Kabat, N. Srinivasan, K. J. Maloy. (2014). Modulation of immune development and function by intestinal microbiota. Trends in Immunology.35(11):507-517. DOI: 10.1038/nri.2017.7.
[103] M. Levy, A. A. Kolodziejczyk, C. A. Thaiss, E. Elinav. et al.(2017). Dysbiosis and the immune system. Nature Reviews. Immunology.17(4):219-232. DOI: 10.1038/nri.2017.7.
[104] F. Melo-Gonzalez, H. Kammoun, E. Evren, E. E. Dutton. et al.(2019). Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria. The Journal of Experimental Medicine.216(4):728-742. DOI: 10.1038/nri.2017.7.
[105] V. Matson, J. Fessler, R. Bao, T. Chongsuwat. et al.(2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science.359(6371):104-108. DOI: 10.1038/nri.2017.7.
[106] H. Cho, H. Jaime, R. P. de Oliveira, B. Kang. et al.(2019). Defective IgA response to atypical intestinal commensals in IL-21 receptor deficiency reshapes immune cell homeostasis and mucosal immunity. Mucosal Immunology.12(1):85-96. DOI: 10.1038/nri.2017.7.
[107] M. Vetizou, J. M. Pitt, R. Daillere, P. Lepage. et al.(2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science.350(6264):1079-1084. DOI: 10.1038/nri.2017.7.
[108] A. Shibata, K. Uga, T. Sato, M. Sagara. et al.(2018). Pharmacological inhibitory profile of TAK-828F, a potent and selective orally available RORt inverse agonist. Biochemical Pharmacology.150:35-45. DOI: 10.1038/nri.2017.7.
[109] P. Chairatana, E. M. Nolan. (2017). Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Critical Reviews in Biochemistry and Molecular Biology.52(1):45-56. DOI: 10.1038/nri.2017.7.
[110] J. L. Kubinak, C. Petersen, W. Z. Stephens, R. Soto. et al.(2015). MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host & Microbe.17(2):153-163. DOI: 10.1038/nri.2017.7.
文献评价指标
浏览 60次
下载全文 15次
评分次数 0次
用户评分 0.0分
分享 0次