首页 » 文章 » 文章详细信息
Science and Technology of Nuclear Installations Volume 2019 ,2019-09-17
Fretting Wear and Fatigue Life Analysis of Fuel Bundles Subjected to Turbulent Axial Flow in CEFR
Research Article
Yafeng Shu 1 , 2 Jianjun Wu 1 Yongwei Yang 2 , 3 Zelong Zhao 2 , 3
Show affiliations
DOI:10.1155/2019/5613737
Received 2019-05-30, accepted for publication 2019-08-29, Published 2019-08-29
PDF
摘要

In a fast spectrum reactor, the fuel rod bundle is mainly positioned radially by the wire which can make contact with the adjacent fuel rods, and then it is inevitable that flow-induced vibration (FIV) will cause fretting wear and vibration fatigue of the fuel cladding at the contact position. Therefore, the computational model of fretting wear and fatigue life about the fuel rod bundle caused by FIV will be studied in this paper. Based on the random vibration model of the fuel rod bundle, Hertz contact theory, and Archard wear theory, the fretting wear life computational model and the fatigue life computational model of the wire-to-adjacent fuel rod (WAFR) contact have been established. Finally, taking CEFR design parameters as an example, the fretting wear life and vibration fatigue life of the cladding are calculated, and it is found that fatigue affects the service life of the fuel rod more seriously than fretting wear. The calculation model and method lay a foundation for further accurate prediction and analysis of the fuel rod life.

授权许可

Copyright © 2019 Yafeng Shu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jianjun Wu.Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China, meb.gov.tr.wujjun@lzu.edu.cn

推荐引用方式

Yafeng Shu,Jianjun Wu,Yongwei Yang,Zelong Zhao. Fretting Wear and Fatigue Life Analysis of Fuel Bundles Subjected to Turbulent Axial Flow in CEFR. Science and Technology of Nuclear Installations ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. M. Clinch. (1969). Measurements of the wall pressure field at the surface of a smooth-walled pipe containing turbulent water flow. Journal of Sound and Vibration.9(3):398-419. DOI: 10.1016/j.nucengdes.2009.08.018.
[2] K. N. Smith, P. Watson, T. H. Topper. (1970). A stress–strain function for the fatigue of metals. Journal of Material.5:767-78. DOI: 10.1016/j.nucengdes.2009.08.018.
[3] P. H. Bakewell. (1964). Narrow-band investigations of the longitudinal space-time correlation function in turbulent airflow. The Journal of the Acoustical Society of America.36(1):146-148. DOI: 10.1016/j.nucengdes.2009.08.018.
[4] Q. H. Wu, D. Y. Ye, Y. Yang. (1995). A new method for predicting the stochastic fatigue life of components. Engineering.12(2):87-94. DOI: 10.1016/j.nucengdes.2009.08.018.
[5] Y. Liu, D. G. Lu, Z. Wang. (2017). A simplified model of flow induced vibration of SCWR fuel rods. Nuclear Science and Engineering.37(3):362-366. DOI: 10.1016/j.nucengdes.2009.08.018.
[6] C.S. Jiang. (2012). Study on Numerical Simulation of Bending Fretting Fatigue of 316L Stainless Steel. DOI: 10.1016/j.nucengdes.2009.08.018.
[7] M. P. Païdoussis. (2004). Fluid-Structure Interactions, Slender Structures and Axial Flow.2. DOI: 10.1016/j.nucengdes.2009.08.018.
[8] P. H. Wirsching, M. C. Light. (1980). Fatigue under wide band random stress. Journal of the Structural Division.106(7):1593-1607. DOI: 10.1016/j.nucengdes.2009.08.018.
[9] L. R. Curling, M. P. Païdoussis. (1992). Measurements and characterization of wall-pressure fluctuations on cylinders in a bundle in turbulent axial flow; Part 1: Spectral characteristics. Journal of Sound and Vibration.157(3):405-433. DOI: 10.1016/j.nucengdes.2009.08.018.
[10] C. P. Guan, H. P. Jin. (2014). Calculation analysis for elastic-plastic contact between ball and plane. Bearing.8:5-8. DOI: 10.1016/j.nucengdes.2009.08.018.
[11] A. Jourani, S. Bouvier. (2015). Friction and wear mechanisms of 316L stainless steel in dry sliding contact: effect of abrasive particle size. Tribology Transactions.58(1):131-139. DOI: 10.1016/j.nucengdes.2009.08.018.
[12] F. Abbasian, S. D. Yu, J. Cao. (2009). Experimental and numerical investigations of three-dimensional turbulent flow of water surrounding a CANDU simulation fuel bundle structure inside a channel. Nuclear Engineering and Design.239(11):2224-2235. DOI: 10.1016/j.nucengdes.2009.08.018.
[13] H. H. Qi, Z. P. Feng, W. J. Wu. (2017). Method for calculation of fretting wear of PWR fuel rod cladding. Nuclear Power Engineering.38(5):54-57. DOI: 10.1016/j.nucengdes.2009.08.018.
[14] S. S. Chen, M. W. Wambsganss. (1972). Parallel-flow-induced vibration of fuel rods. Nuclear Engineering and Design.18(2):253-278. DOI: 10.1016/j.nucengdes.2009.08.018.
[15] R. L. Scott. (1971). Fuel-melting incident at the Fermi Reactor on Oct. 5, 1966. Nuclear Safety.12(2):123-134. DOI: 10.1016/j.nucengdes.2009.08.018.
[16] H. Wang, Z. Hu, W. Lu, M. D. Thouless. et al.(2017). The effect of coupled wear and creep during grid-to-rod fretting. Nuclear Engineering and Design.318:163-173. DOI: 10.1016/j.nucengdes.2009.08.018.
[17] J. D. Robson. (1964). An Introduction to Random Vibration. DOI: 10.1016/j.nucengdes.2009.08.018.
[18] H. Kobayashi. (1995). Leakage of Sodium Coolant from Secondary Cooling Loop in Prototype Fast Breeder Reactor MONJU. DOI: 10.1016/j.nucengdes.2009.08.018.
[19] M. J. Pettigrew, C. E. Taylor, N. J. Fisher, M. Yetisir. et al.(1998). Flow-induced vibration: recent findings and open questions. Nuclear Engineering and Design.185(2-3):249-276. DOI: 10.1016/j.nucengdes.2009.08.018.
[20] F. P. Qi. (2018). Development and Application of a Fuel Element Behavior Analysis Code for Liquid Metal Fast Reactor. DOI: 10.1016/j.nucengdes.2009.08.018.
[21] L. R. Curling. (1982). Theory of vibration of clusters of cylinders in axial flow. DOI: 10.1016/j.nucengdes.2009.08.018.
[22] O. Basquin. (1910). The exponential law of endurance tests. Proceedings of the American Mathematical Society.10:625-630. DOI: 10.1016/j.nucengdes.2009.08.018.
[23] K.-T. Kim. (2009). The study on grid-to-rod fretting wear models for PWR fuel. Nuclear Engineering and Design.239(12):2820-2824. DOI: 10.1016/j.nucengdes.2009.08.018.
[24] L. Wang, Q. Ni, Q. Zhang. (2003). Estimation of fatigue life of pressuring pipe system under random excitations. Journal of Huazhong University of Science & Technology.31(12):100-103. DOI: 10.1016/j.nucengdes.2009.08.018.
[25] M. Xu. (1995). China experimental fast reactor. High Technology Letters.9:53-59. DOI: 10.1016/j.nucengdes.2009.08.018.
[26] A. E. Waltar, D. R. Todd, P. V. Tsvetkov. (2012). Fast Spectrum Reactors. DOI: 10.1016/j.nucengdes.2009.08.018.
[27] L. R. Curling, M. P. Païdoussis. (2003). Analyses for random flow-induced vibration of cylindrical structures subjected to turbulent axial flow. Journal of Sound and Vibration.264(4):795-833. DOI: 10.1016/j.nucengdes.2009.08.018.
[28] M. P. Paidoussis, S. Suss. (1977). Stability of a cluster of flexible cylinders in bounded axial flow. Journal of Applied Mechanics.44(3):401-408. DOI: 10.1016/j.nucengdes.2009.08.018.
[29] K. L. Johnson. (1985). Contact Mechanics. DOI: 10.1016/j.nucengdes.2009.08.018.
[30] Z. B. Xu, J. F. Peng, J. H. Liu, Z. B. Cai. et al.(2017). Effect of contact pressure on torsional fretting fatigue damage of 316L austenitic stainless steel. Wear.376-377:680-689. DOI: 10.1016/j.nucengdes.2009.08.018.
[31] V. Zeman, Š. Dyk, Z. Hlaváč. (2016). Mathematical modelling of nonlinear vibration and fretting wear of the nuclear fuel rods. Archive of Applied Mechanics.86(4):657-668. DOI: 10.1016/j.nucengdes.2009.08.018.
文献评价指标
浏览 107次
下载全文 14次
评分次数 2次
用户评分 5.0分
分享 0次