首页 » 文章 » 文章详细信息
International Journal of Aerospace Engineering Volume 2019 ,2019-09-16
Optimal Midcourse Guidance Algorithm for Exoatmospheric Interception Using Analytical Gradients
Research Article
Wenhao Du 1 Wanchun Chen 1 Liang Yang 1 Hao Zhou 1
Show affiliations
DOI:10.1155/2019/8502870
Received 2019-06-02, accepted for publication 2019-08-23, Published 2019-08-23
PDF
摘要

This paper is aimed at providing a semianalytical method to solve the optimal exoatmospheric interception problem with the minimum fuel consumption. A nonlinear programming (NLP) problem with the minimum velocity increment, which involves Lambert’s problem with unspecified time-of-flight, is firstly formulated. Then, a set of Karush-Kuhn-Tucker conditions and the Jacobian matrix corresponding to those conditions are derived in an analytical manner, even though the derivatives are mathematically complicated and computationally onerous. Therefore, the Newton-Raphson method can be used to efficiently solve this problem. To further decrease computational cost, a near-optimal initialization method reducing the dimension of the search space is presented to provide a better initial guess. The performance of the proposed method is assessed by numerical experiments and comparison with other methods. The results show that this method is not only of high computational efficiency and accuracy but also applicable to onboard guidance.

授权许可

Copyright © 2019 Wenhao Du et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Liang Yang.School of Astronautics, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing, China, buaa.edu.cn.yangliang.buaa@hotmail.com

推荐引用方式

Wenhao Du,Wanchun Chen,Liang Yang,Hao Zhou. Optimal Midcourse Guidance Algorithm for Exoatmospheric Interception Using Analytical Gradients. International Journal of Aerospace Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Q. Chen, Y. Zhang, S. Liao, F. Wan. et al.(2013). Newton-Kantorovich/pseudospectral solution to perturbed astrodynamic two-point boundary-value problems. Journal of Guidance, Control, and Dynamics.36(2):485-498. DOI: 10.1155/2016/9582816.
[2] G. Zhang, D. Zhou, D. Mortari, M. R. Akella. et al.(2018). Covariance analysis of Lambert’s problem via Lagrange’s transfer-time formulation. Aerospace Science and Technology.77:765-773. DOI: 10.1155/2016/9582816.
[3] G. Diesen, C. Keane. (2018). The offensive posture of NATO’s missile defence system. Communist and Post-Communist Studies.51(2):91-100. DOI: 10.1155/2016/9582816.
[4] T. Shima, O. M. Golan. (2012). Exo-atmospheric guidance of an accelerating interceptor missile. Journal of the Franklin Institute.349(2):622-637. DOI: 10.1155/2016/9582816.
[5] Y. Liu, R. Li, L. Hu, Z. Cai. et al.(2018). Optimal solution to orbital three-player defense problems using impulsive transfer. Soft Computing.22(9):2921-2934. DOI: 10.1155/2016/9582816.
[6] S. E. Wailliez. (2014). On Lambert’s problem and the elliptic time of flight equation: a simple semi-analytical inversion method. Advances in Space Research.53(5):890-898. DOI: 10.1155/2016/9582816.
[7] M. Zuo, G. Dai, L. Peng, M. Wang. et al.(2016). Multiple gravity assist spacecraft trajectories design based on BFS and EP_DE algorithm. International Journal of Aerospace Engineering.2016-13. DOI: 10.1155/2016/9582816.
[8] S. Gutman, S. Rubinsky. (2015). 3D-nonlinear vector guidance and exo-atmospheric interception. IEEE Transactions on Aerospace and Electronic Systems.51(4):3014-3022. DOI: 10.1155/2016/9582816.
[9] N. Arora, R. P. Russell. Fast and robust multiple revolution Lambert algorithm using a cosine transformation. . DOI: 10.1155/2016/9582816.
[10] G. Avanzini. (2008). A simple Lambert algorithm. Journal of Guidance, Control, and Dynamics.31(6):1587-1594. DOI: 10.1155/2016/9582816.
[11] R. H. Battin, R. M. Vaughan. (1984). An elegant Lambert algorithm. Journal of Guidance, Control, and Dynamics.7(6):662-670. DOI: 10.1155/2016/9582816.
[12] X. Wang, X. Yue, H. Dai, S. N. Atluri. et al.(2017). Feedback-accelerated Picard iteration for orbit propagation and Lambert’s problem. Journal of Guidance, Control, and Dynamics.40(10):2442-2451. DOI: 10.1155/2016/9582816.
[13] D. Izzo. (2015). Revisiting Lambert’s problem. Celestial Mechanics and Dynamical Astronomy.121(1):1-15. DOI: 10.1155/2016/9582816.
[14] Y. Zhang, S. Tang, J. Guo. (2018). An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets. Chinese Journal of Aeronautics.31(6):1327-1344. DOI: 10.1155/2016/9582816.
[15] K. Li, T. Zhang, L. Chen. (2013). Ideal proportional navigation for exoatmospheric interception. Chinese Journal of Aeronautics.26(4):976-985. DOI: 10.1155/2016/9582816.
[16] V. Garber. (1968). Optimum intercept laws for accelerating targets. AIAA Journal.6(11):2196-2198. DOI: 10.1155/2016/9582816.
[17] J. Ahn, J. Bang, S. I. Lee. (2015). Acceleration of zero-revolution Lambert’s algorithms using table-based initialization. Journal of Guidance, Control, and Dynamics.38(2):335-342. DOI: 10.1155/2016/9582816.
[18] R. M. Woollands, J. Read, K. Hernandez, A. Probe. et al.(2018). Unified Lambert tool for massively parallel applications in space situational awareness. The Journal of the Astronautical Sciences.65(1):29-45. DOI: 10.1155/2016/9582816.
[19] B. Newman. (1996). Strategic intercept midcourse guidance using modified zero effort miss steering. Journal of Guidance, Control, and Dynamics.19(1):107-112. DOI: 10.1155/2016/9582816.
[20] W. Yu, W. Chen, L. Yang, X. Liu. et al.(2016). Optimal terminal guidance for exoatmospheric interception. Chinese Journal of Aeronautics.29(4):1052-1064. DOI: 10.1155/2016/9582816.
[21] S. Fritz, K. Turkoglu. (2017). Optimal trajectory determination and mission design for asteroid/deep-space exploration via multibody gravity assist maneuvers. International Journal of Aerospace Engineering.2017-12. DOI: 10.1155/2016/9582816.
[22] K. F. Gauss. (1857). Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, English Translation by C. H. Davis, Theory of the Motion of the Heavenly Bodies Moving About the Sun. DOI: 10.1155/2016/9582816.
[23] R. H. Battin, T. J. Fill, S. W. Shepperd. (1978). A new transformation invariant in the orbital boundary-value problem. Journal of Guidance, Control, and Dynamics.1(1):50-55. DOI: 10.1155/2016/9582816.
[24] P. Zarchan. (2012). Tactical and Strategic Missile Guidance, Sixth Edition. DOI: 10.1155/2016/9582816.
[25] R. Armellin, D. Gondelach, J. F. San Juan. (2018). Multiple revolution perturbed Lambert problem solvers. Journal of Guidance, Control, and Dynamics.41(9):2019-2032. DOI: 10.1155/2016/9582816.
[26] N. Arora, R. P. Russell, N. Strange, D. Ottesen. et al.(2015). Partial derivatives of the solution to the Lambert boundary value problem. Journal of Guidance, Control, and Dynamics.38(9):1563-1572. DOI: 10.1155/2016/9582816.
[27] B. Yuksek, N. K. Ure. (2016). Optimization of allocation and launch conditions of multiple missiles for three-dimensional collaborative interception of ballistic targets. International Journal of Aerospace Engineering.2016-14. DOI: 10.1155/2016/9582816.
[28] R. R. Bate, D. D. Mueller, J. E. White. (1971). Fundamentals of Astrodynamics. DOI: 10.1155/2016/9582816.
[29] S. P. Burns, J. J. Scherock. (2004). Lambert guidance routine designed to match position and velocity of ballistic target. Journal of Guidance, Control, and Dynamics.27(6):989-996. DOI: 10.1155/2016/9582816.
[30] S. L. Nelson, P. Zarchan. (1992). Alternative approach to the solution of Lambert’s problem. Journal of Guidance, Control, and Dynamics.15(4):1003-1009. DOI: 10.1155/2016/9582816.
[31] A. Rauh, J. Parisi. (2014). Near distance approximation in astrodynamical applications of Lambert’s theorem. Celestial Mechanics and Dynamical Astronomy.118(1):49-74. DOI: 10.1155/2016/9582816.
[32] D. De La Torre, R. Flores, E. Fantino. (2018). On the solution of Lambert’s problem by regularization. Acta Astronautica.153:26-38. DOI: 10.1155/2016/9582816.
[33] J. Ahn, S. I. Lee. (2013). Lambert algorithm using analytic gradients. Journal of Guidance, Control, and Dynamics.36(6):1751-1761. DOI: 10.1155/2016/9582816.
[34] R. H. Gooding. (1990). Procedure for the solution of Lambert’s orbital boundary-value problem. Celestial Mechanics and Dynamical Astronomy.48(2):145-165. DOI: 10.1155/2016/9582816.
[35] L. Yang, X. Liu, W. Chen, H. Zhou. et al.(2018). Autonomous entry guidance using linear pseudospectral model predictive control. Aerospace Science and Technology.80:38-55. DOI: 10.1155/2016/9582816.
[36] L. C. L. Yuan. (1948). Homing and navigational courses of automatic target‐seeking devices. Journal of Applied Physics.19(12):1122-1128. DOI: 10.1155/2016/9582816.
[37] Z. Yang, Y. Z. Luo, J. Zhang, G. J. Tang. et al.(2015). Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization. Journal of Guidance, Control, and Dynamics.38(11):2215-2223. DOI: 10.1155/2016/9582816.
文献评价指标
浏览 14次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次