首页 » 文章 » 文章详细信息
Evidence-Based Complementary and Alternative Medicine Volume 2019 ,2019-09-17
Network Pharmacology Reveals the Molecular Mechanism of Cuyuxunxi Prescription in Promoting Wound Healing in Patients with Anal Fistula
Research Article
Yin Qu 1 Zhijun Zhang 1 Yafeng Lu 1 De Zheng 1 Yang Wei 1
Show affiliations
DOI:10.1155/2019/3865121
Received 2019-05-15, accepted for publication 2019-08-06, Published 2019-08-06
PDF
摘要

Background. The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods. The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results. A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion. The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.

授权许可

Copyright © 2019 Yin Qu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yang Wei.Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China, shutcm.edu.cn.yangweiyishi@163.com

推荐引用方式

Yin Qu,Zhijun Zhang,Yafeng Lu,De Zheng,Yang Wei. Network Pharmacology Reveals the Molecular Mechanism of Cuyuxunxi Prescription in Promoting Wound Healing in Patients with Anal Fistula. Evidence-Based Complementary and Alternative Medicine ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. Li, X. Xu, X. Wang. (2012). A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease. International Journal of Molecular Sciences.13(12):13501-13520. DOI: 10.3348/kjr.2018.0260.
[2] S. T. Feng, M. Huang, Z. Dong. (2019). MRI T2-weighted imaging and fat-suppressed T2-weighted imaging image fusion technology improves image discriminability for the evaluation of anal fistulas. Korean Journal of Radiology.20(3):429-437. DOI: 10.3348/kjr.2018.0260.
[3] Q. Yin, Y. Wei, Z. De, W. Qingming. et al.(2013). Effect of different concentration and treatment of Chinese herbal fumigant of Cuyuxunxi prescription on complications after anal fistuletomy. World Traditional Chinese Medicine.8(12):1417-1419. DOI: 10.3348/kjr.2018.0260.
[4] F. Zhao, L. Guochun, Y. Yang, L. Shi. et al.(2015). A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. Journal of Ethnopharmacology.168:1-16. DOI: 10.3348/kjr.2018.0260.
[5] C. T. Keith, A. A. Borisy, B. R. Stockwell. (2005). Multicomponent therapeutics for networked systems. Nature Reviews Drug Discovery.4(1):71-78. DOI: 10.3348/kjr.2018.0260.
[6] T. Pei, C. Zheng, C. Huang. (2016). Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. Journal of Ethnopharmacology.190:272-287. DOI: 10.3348/kjr.2018.0260.
[7] D. S. Wishart, Y. D. Feunang, A. C. Guo. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research.46(D1):D1074-D1082. DOI: 10.3348/kjr.2018.0260.
[8] L. Huang, D. Xie, Y. Yu. (2018). TCMID 2.0: a comprehensive resource for TCM. Nucleic Acids Research.46(D1):D1117-D1120. DOI: 10.3348/kjr.2018.0260.
[9] C. Zanotti, C. Martinez-Puente, I. Pascual, M. Pascual. et al.(2007). An assessment of the incidence of fistula-in-ano in four countries of the European Union. International Journal of Colorectal Disease.22(12):1459-1462. DOI: 10.3348/kjr.2018.0260.
[10] P. Sainio. (1984). Fistula-in-ano in a defined population. Incidence and epidemiological aspects. Annales Chirurgiae et Gynaecologiae.73(4):219-224. DOI: 10.3348/kjr.2018.0260.
[11] J. Ru, P. Li, J. Wang. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics.6(1):13. DOI: 10.3348/kjr.2018.0260.
[12] H. Y. Fang, H. W. Zeng, L. M. Lin. (2017). A network-based method for mechanistic investigation of Shexiang Baoxin pill’s treatment of cardiovascular diseases. Scientific Reports.7(1):43632. DOI: 10.3348/kjr.2018.0260.
[13] V. Law, C. Knox, Y. Djoumbou. (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research.42(D1):D1091-D1097. DOI: 10.3348/kjr.2018.0260.
[14] A. P. Davis, C. J. Grondin, R. J. Johnson. (2019). The comparative toxicogenomics database: update 2019. Nucleic Acids Research.47(D1):D948-D954. DOI: 10.3348/kjr.2018.0260.
[15] X. Zhang, J. Gu, L. Cao. (2014). Network pharmacology study on the mechanism of traditional Chinese medicine for upper respiratory tract infection. Molecular BioSystems.10(10):2517-2525. DOI: 10.3348/kjr.2018.0260.
[16] C. J. Mattingly, M. C. Rosenstein, A. P. Davis, G. T. Colby. et al.(2006). The comparative toxicogenomics database: a cross-species resource for building chemical-gene interaction networks. Toxicological Sciences.92(2):587-595. DOI: 10.3348/kjr.2018.0260.
[17] E. E. Schadt, S. H. Friend, D. A. Shaywitz. (2009). A network view of disease and compound screening. Nature Reviews Drug Discovery.8(4):286-295. DOI: 10.3348/kjr.2018.0260.
[18] M. Lyu, C. L. Yan, H. X. Liu. (2017). Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection. Scientific Reports.7(1):15427. DOI: 10.3348/kjr.2018.0260.
[19] H. Dudukgian, H. Abcarian. (2011). Why do we have so much trouble treating anal fistula?. World Journal of Gastroenterology.17(28):3292-3296. DOI: 10.3348/kjr.2018.0260.
[20] C. Ma, T. Xu, X. Sun. (2019). Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of baicalein in hepatocellular carcinoma. Evidence-Based Complementary and Alternative Medicine.2019-15. DOI: 10.3348/kjr.2018.0260.
[21] A. I. Malik, R. L. Nelson. (2008). Surgical management of anal fistulae: a systematic review. Colorectal Disease.10(5):420-430. DOI: 10.3348/kjr.2018.0260.
[22] A. P. Davis, C. G. Murphy, M. C. Rosenstein, T. C. Wiegers. et al.(2008). The comparative toxicogenomics database facilitates identification and understanding of chemical-gene-disease associations: arsenic as a case study. BMC Medical Genomics.1(1):48. DOI: 10.3348/kjr.2018.0260.
[23] G. Yu, W. Wang, X. Wang. (2018). Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis. BMC Complementary and Alternative Medicine.18(1):292. DOI: 10.3348/kjr.2018.0260.
[24] J. Garcia-Aguilar, C. Belmonte, W. D. Wong, S. M. Goldberg. et al.(1996). Anal fistula surgery. Factors associated with recurrence and incontinence. Diseases of the Colon & Rectum.39(7):723-729. DOI: 10.3348/kjr.2018.0260.
[25] M. Huber-Lang, A. Kovtun, A. Ignatius. (2013). The role of complement in trauma and fracture healing. Seminars in Immunology.25(1):73-78. DOI: 10.3348/kjr.2018.0260.
[26] U. Amara, D. Rittirsch, M. Flierl. (2008). Interaction between the coagulation and complement system. Advances in Experimental Medicine and Biology.632:71-79. DOI: 10.3348/kjr.2018.0260.
[27] R. Wiegner, S. Chakraborty, M. Huber-Lang. (2016). Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology.221(10):1073-1079. DOI: 10.3348/kjr.2018.0260.
[28] P. Shannon, A. Markiel, O. Ozier. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research.13(11):2498-2504. DOI: 10.3348/kjr.2018.0260.
[29] D. Szklarczyk, A. L. Gable, D. Lyon. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research.47(D1):D607-D613. DOI: 10.3348/kjr.2018.0260.
[30] F. Yamashita, M. Hashida. (2004). In silico approaches for predicting ADME properties of drugs. Drug Metabolism and Pharmacokinetics.19(5):327-338. DOI: 10.3348/kjr.2018.0260.
文献评价指标
浏览 1016次
下载全文 50次
评分次数 1次
用户评分 4.0分
分享 0次