首页 » 文章 » 文章详细信息
Canadian Journal of Infectious Diseases and Medical Microbiology Volume 2019 ,2019-09-16
Effect of Rising Temperature on Lyme Disease: Ixodes scapularis Population Dynamics and Borrelia burgdorferi Transmission and Prevalence
Research Article
Dorothy Wallace 1 Vardayani Ratti 1 Anita Kodali 1 Jonathan M. Winter 1 Matthew P. Ayres 1 Jonathan W. Chipman 1 Carissa F. Aoki 1 Erich C. Osterberg 1 Clara Silvanic 1 Trevor F. Partridge 1 Mariana J. Webb 1
Show affiliations
DOI:10.1155/2019/9817930
Received 2019-04-17, accepted for publication 2019-07-07, Published 2019-07-07
PDF
摘要

Warmer temperatures are expected to increase the incidence of Lyme disease through enhanced tick maturation rates and a longer season of transmission. In addition, there could be an increased risk of disease export because of infected mobile hosts, usually birds. A temperature-driven seasonal model of Borrelia burgdorferi (Lyme disease) transmission among four host types is constructed as a system of nonlinear ordinary differential equations. The model is developed and parametrized based on a collection of lab and field studies. The model is shown to produce biologically reasonable results for both the tick vector (Ixodes scapularis) and the hosts when compared to a different set of studies. The model is used to predict the response of Lyme disease risk to a mean annual temperature increase, based on current temperature cycles in Hanover, NH. Many of the risk measures suggested by the literature are shown to change with increased mean annual temperature. The most straightforward measure of disease risk is the abundance of infected questing ticks, averaged over a year. Compared to this measure, which is difficult and resource-intensive to track in the field, all other risk measures considered underestimate the rise of risk with rise in mean annual temperature. The measure coming closest was “degree days above zero.” Disease prevalence in ticks and hosts showed less increase with rising temperature. Single field measurements at the height of transmission season did not show much change at all with rising temperature.

授权许可

Copyright © 2019 Dorothy Wallace et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Dorothy Wallace.Dartmouth College, Hanover, NH 03755, USA, dartmouth.edu.dwallace@math.dartmouth.edu

推荐引用方式

Dorothy Wallace,Vardayani Ratti,Anita Kodali,Jonathan M. Winter,Matthew P. Ayres,Jonathan W. Chipman,Carissa F. Aoki,Erich C. Osterberg,Clara Silvanic,Trevor F. Partridge,Mariana J. Webb. Effect of Rising Temperature on Lyme Disease: Ixodes scapularis Population Dynamics and Borrelia burgdorferi Transmission and Prevalence. Canadian Journal of Infectious Diseases and Medical Microbiology ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. E. Adelson, R.-V. S. Rao, R. C. Tilton. (2004). Prevalence of , spp., , and in ticks collected in Northern New Jersey. Journal of Clinical Microbiology.42(6):2799-2801. DOI: 10.15585/mmwr.mm6717e1.
[2] K. C. Stafford, M. L. Cartter, L. A. Magnarelli, S. H. Ertel. et al.(1998). Temporal correlations between tick abundance and prevalence of ticks infected with and increasing incidence of Lyme disease. Journal of Clinical Microbiology.36(5):1240-1244. DOI: 10.15585/mmwr.mm6717e1.
[3] A. Greer, V. Ng, D. Fisman. (2008). Climate change and infectious diseases in North America: the road ahead. Canadian Medical Association Journal.178(6):715-722. DOI: 10.15585/mmwr.mm6717e1.
[4] P. A. Leighton, J. K. Koffi, Y. Pelcat, L. R. Lindsay. et al.(2012). Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Canada. Journal of Applied Ecology.49(2):457-464. DOI: 10.15585/mmwr.mm6717e1.
[5] K. M. Clow, N. H. Ogden, L. R. Lindsay, P. Michel. et al.(2017). The influence of abiotic and biotic factors on the invasion of in Ontario, Canada. Ticks and Tick-Borne Diseases.8(4):554-563. DOI: 10.15585/mmwr.mm6717e1.
[6] K. L. Gage, T. R. Burkot, R. J. Eisen, E. B. Hayes. et al.(2008). Climate and vectorborne diseases. American Journal of Preventive Medicine.35(5):436-450. DOI: 10.15585/mmwr.mm6717e1.
[7] J. S. Brownstein, T. R. Holford, D. Fish. (2003). A climate-based model predicts the spatial distribution of the Lyme disease vector in the United States. Environmental Health Perspectives.111(9):1152-1157. DOI: 10.15585/mmwr.mm6717e1.
[8] J. J. Hess, J. N. Malilay, A. J. Parkinson. (2008). Climate change. American Journal of Preventive Medicine.35(5):468-478. DOI: 10.15585/mmwr.mm6717e1.
[9] A. Hojgaard, R. J. Eisen, J. Piesman. (2008). Transmission dynamics of .s. During the key third day of feeding by nymphal (Acari: ixodidae). Journal of Medical Entomology.45(4):732-736. DOI: 10.15585/mmwr.mm6717e1.
[10] J. L. Brunner, M. Killilea, R. S. Ostfeld. (2012). Overwintering survival of nymphal (Acari: ixodidae) under natural conditions. Journal of Medical Entomology.49(5):981-987. DOI: 10.15585/mmwr.mm6717e1.
[11] R. Ostfeld. (2010). Lyme Disease: The Ecology of a Complex System. DOI: 10.15585/mmwr.mm6717e1.
[12] R. Rosenberg, N. P. Lindsey, M. Fischer. (2018). Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morbidity and Mortality Weekly Report.67(17):496-501. DOI: 10.15585/mmwr.mm6717e1.
[13] J. A. Simon, R. R. Marrotte, N. Desrosiers. (2014). Climate change and habitat fragmentation drive the occurrence of , the agent of Lyme disease, at the northeastern limit of its distribution. Evolutionary Applications.7(7):750-764. DOI: 10.15585/mmwr.mm6717e1.
[14] M. R. Bertrand, M. L. Wilson. (1996). Microclimate-dependent survival of unfed adult (Acari: ixodidae) in nature: life cycle and study design implications. Journal of Medical Entomology.33(4):619-627. DOI: 10.15585/mmwr.mm6717e1.
[15] K. M. Pepin, M. A. Diuk-Wasser, R. J. Eisen. (2012). Geographic variation in the relationship between human Lyme disease incidence and density of infected host-seeking nymphs in the eastern United States. American Journal of Tropical Medicine and Hygiene.86(6):1062-1071. DOI: 10.15585/mmwr.mm6717e1.
[16] The Mathworks. Inc. . (1992). USG Matlab. The Mathworks. Inc. DOI: 10.15585/mmwr.mm6717e1.
[17] J. Bunikis, J. Tsao, C. J. Luke, M. G. Luna. et al.(2004). infection in a natural population of mice: a longitudinal study in an area where Lyme borreliosis is highly endemic. Journal of Infectious Diseases.189(8):1515-1523. DOI: 10.15585/mmwr.mm6717e1.
[18] N. H. Ogden, L. R. Lindsay, M. Morshed, P. N. Sockett. et al.(2009). The emergence of Lyme disease in Canada. Canadian Medical Association Journal.180(12):1221-1224. DOI: 10.15585/mmwr.mm6717e1.
[19] N. H. Ogden, L. R. Lindsay. (2016). Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends in Parasitology.32(8):646-656. DOI: 10.15585/mmwr.mm6717e1.
[20] N. H. Ogden, L. St-Onge, I. K. Barker. (2008). Risk maps for range expansion of the Lyme disease vector, , in Canada now and with climate change. International Journal of Health Geographics.7(1):24. DOI: 10.15585/mmwr.mm6717e1.
[21] J. O. Whitaker, W. J. Hamilton. (1998). Mammals of the Eastern United States. DOI: 10.15585/mmwr.mm6717e1.
[22] J. F. Anderson, R. C. Johnson, L. A. Magnarelli. (1987). Seasonal prevalence of in natural populations of white-footed mice,. Journal of Clinical Microbiology.25(8):1564-1566. DOI: 10.15585/mmwr.mm6717e1.
[23] N. H. Ogden, M. Radojević, X. Wu, V. R. Duvvuri. et al.(2014). Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector. Environmental Health Perspectives.122(6):631-638. DOI: 10.15585/mmwr.mm6717e1.
[24] D. A. Jobe, S. D. Lovrich, J. A. Nelson. (2006). ticks, Chicago area. Emerging Infectious Diseases.12(6):1039-1041. DOI: 10.15585/mmwr.mm6717e1.
[25] N. H. Ogden, M. Bigras-Poulin, K. Hanincová, A. Maarouf. et al.(2008). Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick. Journal of Theoretical Biology.254(3):621-632. DOI: 10.15585/mmwr.mm6717e1.
[26] R. S. Ostfeld, K. R. Hazler, O. M. Cepeda. (1996). Temporal and spatial dynamics of (Acari: ixodidae) in a rural landscape. Journal of Medical Entomology.33(1):90-95. DOI: 10.15585/mmwr.mm6717e1.
[27] R. Shope. (1991). Global climate change and infectious diseases. Environmental Health Perspectives.96:171-174. DOI: 10.15585/mmwr.mm6717e1.
[28] P. Porneluzi, M. A. Van Horn, T. M. Donovan. (2011). The Birds of North America Online. DOI: 10.15585/mmwr.mm6717e1.
[29] R. S. Ostfeld, O. M. Cepeda, K. R. Hazler, M. C. Miller. et al.(1995). Ecology of Lyme disease: habitat associations of ticks () in a rural landscape. Ecological Applications.5(2):353-361. DOI: 10.15585/mmwr.mm6717e1.
[30] J. Chesson. (1983). The estimation and analysis of preference and its relatioship to foraging models. Ecology.64(5):1297-1304. DOI: 10.15585/mmwr.mm6717e1.
[31] T. Levi, F. Keesing, R. D. Holt, M. Barfield. et al.(2016). Quantifying dilution and amplification in a community of hosts for tick-borne pathogens. Ecological Applications.26(2):484-498. DOI: 10.15585/mmwr.mm6717e1.
[32] K. LoGiudice, R. S. Ostfeld, K. A. Schmidt, F. Keesing. et al.(2003). The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences.100(2):567-571. DOI: 10.15585/mmwr.mm6717e1.
[33] N. H. Ogden, A. Maarouf, I. K. Barker. (2006). Climate change and the potential for range expansion of the Lyme disease vector in Canada. International Journal for Parasitology.36(1):63-70. DOI: 10.15585/mmwr.mm6717e1.
[34] J. Jacobs. (1974). Quantitative measurement of food selection. Oecologia.14(4):413-417. DOI: 10.15585/mmwr.mm6717e1.
[35] J. S. Brownstein, T. R. Holford, D. Fish. (2005). Effect of climate change on Lyme disease risk in North America. EcoHealth.2(1):38-46. DOI: 10.15585/mmwr.mm6717e1.
[36] N. H. Ogden, M. Bigras-Poulin, C. J. O’callaghan. (2007). Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick. Parasitology.134(2):209-227. DOI: 10.15585/mmwr.mm6717e1.
[37] R. S. Vose, D. R. Easterling, K. E. Kunkel, A. N. LeGrande. et al.(2017). Temperature changes in the United States. Climate Science Special Report: Fourth National Climate Assessment, Volume I:185-206. DOI: 10.15585/mmwr.mm6717e1.
[38] M. A. Diuk‐Wasser, G. Vourc’h, P. Cislo. (2010). Field and climate‐based model for predicting the density of host‐seeking nymphal , an important vector of tick‐borne disease agents in the eastern United States. Global Ecology and Biogeography.19(4):504-514. DOI: 10.15585/mmwr.mm6717e1.
[39] K. A. Berger, H. S. Ginsberg, L. Gonzalez, T. N. Mather. et al.(2014). Relative humidity and activity patterns of (Acari: ixodidae). Journal of Medical Entomology.51(4):769-776. DOI: 10.15585/mmwr.mm6717e1.
[40] L. Bennet, A. Halling, J. Berglund. (2006). Increased incidence of Lyme borreliosis in southern Sweden following mild winters and during warm, humid summers. European Journal of Clinical Microbiology & Infectious Diseases.25(7):426-432. DOI: 10.15585/mmwr.mm6717e1.
[41] L. R. Lindsay, S. W. Mathison, I. K. Barker, S. A. McEwen. et al.(1999). Abundance of (Acari: ixodidae) larvae and nymphs in relation to host density and habitat on long point, Ontario. Journal of Medical Entomology.36(3):243-254. DOI: 10.15585/mmwr.mm6717e1.
[42] X. Wu, V. R. S. K. Duvvuri, J. Wu. Modeling dynamical temperature influence on tick population. . DOI: 10.15585/mmwr.mm6717e1.
[43] H. D. Gaff, L. J. Gross. (2007). Modeling tick-borne disease: a metapopulation model. Bulletin of Mathematical Biology.69(1):265-288. DOI: 10.15585/mmwr.mm6717e1.
[44] A. D. M. Dobson, T. J. R. Finnie, S. E. Randolph. (2011). A modified matrix model to describe the seasonal population ecology of the European tick. Journal of Applied Ecology.48(4):1017-1028. DOI: 10.15585/mmwr.mm6717e1.
[45] M. J. Menne, I. Durre, B. Korzeniewski. (2012). Global Historical Climatology Network—Daily. Version 3.22. DOI: 10.15585/mmwr.mm6717e1.
[46] NOAA National Centers for Environmental Information. (2018). Local Climatological Dataset, Lebanon Municipal Airport. DOI: 10.15585/mmwr.mm6717e1.
[47] M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason. et al.(2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology.29(7):897-910. DOI: 10.15585/mmwr.mm6717e1.
[48] T. J. Daniels, R. C. Falco, K. L. Curran, D. Fish. et al.(1996). Timing of (Acari: ixodidae) oviposition and arval activity in southern New York. Journal of Medical Entomology.33(1):140-147. DOI: 10.15585/mmwr.mm6717e1.
[49] N. H. Ogden, L. R. Lindsay, G. Beauchamp. (2004). Investigation of relationships between temperature and developmental rates of Tick (Acari: ixodidae) in the laboratory and field. Journal of Medical Entomology.41(4):622-633. DOI: 10.15585/mmwr.mm6717e1.
[50] M. McPherson, A. García-García, F. J. Cuesta-Valero. (2017). Expansion of the Lyme disease vector in Canada inferred from CMIP5 climate projections. Environmental Health Perspectives.125(5). DOI: 10.15585/mmwr.mm6717e1.
[51] S. A. Hamer, J. I. Tsao, E. D. Walker, G. J. Hickling. et al.(2010). Invasion of the Lyme disease vector : implications for endemicity. EcoHealth.7(1):47-63. DOI: 10.15585/mmwr.mm6717e1.
[52] R. S. Ostfeld, J. L. Brunner. (2015). Climate change and tick-borne diseases of humans. Philosophical Transactions of the Royal Society B: Biological Sciences.370(1665):20140051. DOI: 10.15585/mmwr.mm6717e1.
[53] N. H. Ogden, M. Bigras-Poulin, C. J. O’Callaghan. (2005). A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick. International Journal for Parasitology.35(4):375-389. DOI: 10.15585/mmwr.mm6717e1.
[54] D. J. Lieske, V. K. Lloyd. (2018). Combining public participatory surveillance and occupancy modelling to predict the distributional response of to climate change. Ticks and Tick-Borne Diseases.9(3):695-706. DOI: 10.15585/mmwr.mm6717e1.
[55] T. L. Johnson, K. A. Boegler, R. J. Clark. (2018). An acarological risk model predicting the density and distribution of host-seeking nymphs in Minnesota. American Journal of Tropical Medicine and Hygiene.98(6):1671-1682. DOI: 10.15585/mmwr.mm6717e1.
[56] T. C. Porco. (1999). A mathematical model of the ecology of Lyme disease. Mathematical Medicine and Biology.16(3):261-296. DOI: 10.15585/mmwr.mm6717e1.
[57] P. W. Rand, C. Lubelczyk, G. R. Lavigne. (2003). Deer density and the abundance of (Acari: ixodidae). Journal of Medical Entomology.40(2):179-184. DOI: 10.15585/mmwr.mm6717e1.
[58] K. A. Schmidt, R. S. Ostfeld, E. M. Schauber. (1999). Infestation of and by (Acari: ixodidae) in relation to the abundance of hosts and parasites. Journal of Medical Entomology.36(6):749-757. DOI: 10.15585/mmwr.mm6717e1.
[59] L. R. Lindsay, S. W. Mathison, I. K. Barker, S. A. McEwen. et al.(1999). Microclimate and habitat in relation to (Acari: ixodidae) populations on long point, Ontario, Canada. Journal of Medical Entomology.36(3):255-262. DOI: 10.15585/mmwr.mm6717e1.
[60] M. J. Lechowicz. (1982). The sampling characteristics of electivity indices. Oecologia.52(1):22-30. DOI: 10.15585/mmwr.mm6717e1.
文献评价指标
浏览 15次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次