首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-09-19
Accuracy Assessment of Nonlinear Seismic Displacement Demand Predicted by Simplified Methods for the Plateau Range of Design Response Spectra
Research Article
Pierino Lestuzzi 1 Lorenzo Diana 1 , 2
Show affiliations
DOI:10.1155/2019/1396019
Received 2019-02-28, accepted for publication 2019-08-09, Published 2019-08-09
PDF
摘要

The nonlinear seismic displacement demand prediction for low-period structures, i.e., with an initial fundamental period situated in the plateau of design response spectra, is studied. In Eurocode 8, the computation of seismic displacement demands is essentially based on a simplified method called the N2 method. Alternative approaches using linear computation with increased damping ratio are common in other parts of the world. The accuracy of three methods for seismic displacement demand prediction is carefully examined for the plateau range of Type-1 soil class response spectra of Eurocode 8. The accuracy is assessed through comparing the displacement demand computed using nonlinear time-history analysis (NLTHA) with predictions using simplified methods. The N2 method, a recently proposed optimization of the N2 method, and the Lin and Miranda method are compared. Nonlinear single-degree-of-freedom systems are subjected to several sets of recorded earthquakes that are modified to match design response spectra prescribed by Eurocode 8. The shape of Eurocode 8 response spectra after the plateau is defined by a constant pseudovelocity range (1/T). However, the slope of this declining branch may be specified using precise spectral microzonation investigation. However, the N2 method has been found to be particularly inaccurate with certain microzonation response spectra that are characterized by a gently decreasing branch after the plateau. The present study investigates the impact of the slope of the decreasing branch after the plateau of response spectra on the accuracy of displacement demand predictions. The results show that the accuracy domain of the N2 method is restricted to strength reduction factor values around 3.5. Using the N2 method to predict displacement demands leads to significant overestimations for strength reduction factors smaller than 2.5 and to significant underestimations for strength reduction factors larger than 4. Fortunately, the optimized N2 method leads to accurate results for the whole range of strength reduction factors. For small values of strength reduction factors, up to 2.5, the optimized N2 method and the Lin and Miranda method both provide accurate displacement demand predictions. However, the accuracy of displacement demand prediction strongly depends on the shape of the response spectrum after the plateau. A gently decreasing branch after the plateau affects the accuracy of displacement demand predictions. A threshold value of 0.75 for the exponent of the decreasing branch (1/Tα) after the plateau is proposed. This issue should be considered for the ongoing developments of Eurocode 8.

授权许可

Copyright © 2019 Pierino Lestuzzi and Lorenzo Diana. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Pierino Lestuzzi.EPFL-ENAC-IIC-IMAC, Lausanne, Switzerland, imac.epfl.ch.pierino.lestuzzi@epfl.ch

推荐引用方式

Pierino Lestuzzi,Lorenzo Diana. Accuracy Assessment of Nonlinear Seismic Displacement Demand Predicted by Simplified Methods for the Plateau Range of Design Response Spectra. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y.-Y. Lin, E. Miranda. (2008). Noniterative equivalent linear method for evaluation of existing structures. Journal of Structural Engineering.134(11):1685-1695. DOI: 10.1016/j.soildyn.2018.05.002.
[2] M. J. Kowalsky. (1994). Displacement-based design-a methodology for seismic design applied to RC bridge columns. . DOI: 10.1016/j.soildyn.2018.05.002.
[3] Y.-Y. Lin, E. Miranda. (2009). Evaluation of equivalent linear methods for estimating target displacements of existing structures. Engineering Structures.31(12):3080-3089. DOI: 10.1016/j.soildyn.2018.05.002.
[4] A. Veletsos, N. Newmark. Effect of inelastic behavior on the response of simple systems to earthquake motion. .2:895-912. DOI: 10.1016/j.soildyn.2018.05.002.
[5] L. Diana, A. Manno, P. Lestuzzi, S. Podestà. et al.(2018). Impact of displacement demand reliability for seismic vulnerability assessment at an urban scale. Soil Dynamics and Earthquake Engineering.112:35-52. DOI: 10.1016/j.soildyn.2018.05.002.
[6] . DOI: 10.1016/j.soildyn.2018.05.002.
[7] R. Riddell, P. Hidalgo, E. Cruz. (1989). Response modification factors for earthquake resistant design of short period buildings. Earthquake Spectra.5(3):571-590. DOI: 10.1016/j.soildyn.2018.05.002.
[8] P. Lestuzzi, M. Badoux. An experimental confirmation of the equal displacement rule for RC structural walls. . DOI: 10.1016/j.soildyn.2018.05.002.
[9] N. Ambraseys, P. Smit, R. Sigbjornsson, P. Suhadolc. et al.(2002). Internet Site for European Strong-Motion Data. DOI: 10.1016/j.soildyn.2018.05.002.
[10] F. Graziotti, A. Penna, E. Bossi, G. Magenes. et al.Evaluation of displacement demand for unreinforced masonry buildings by equivalent SDOF systems. . DOI: 10.1016/j.soildyn.2018.05.002.
[11] P. Lestuzzi, M. Badoux. (2013). Evaluation Parasismique des Constructions Existantes. DOI: 10.1016/j.soildyn.2018.05.002.
[12] T. Vidic, P. Fajfar, M. Fischinger. (1994). Consistent inelastic design spectra: strength and displacement. Earthquake Engineering & Structural Dynamics.23(5):507-521. DOI: 10.1016/j.soildyn.2018.05.002.
[13] T. Takeda, M. A. Sozen, N. N. Nielsen. (1970). Reinforced concrete response to simulated earthquakes. Journal of the Structural Division ASCE.96:2557-2573. DOI: 10.1016/j.soildyn.2018.05.002.
[14] L. Diana, A. Manno, P. Lestuzzi. (2019). Seismic displacement demand prediction in non-linear domain: optimization of the N2 method. Earthquake Engineering and Engineering Vibration.18(1):141-158. DOI: 10.1016/j.soildyn.2018.05.002.
[15] P. Lestuzzi, M. Badoux. The gamma model: a simple hysteretic model for RC walls. . DOI: 10.1016/j.soildyn.2018.05.002.
[16] M. Saiidi, M. A. Sozen. (1981). Simple nonlinear seismic analysis of R/C structures. Journal of the Structural Division.107(5):937-953. DOI: 10.1016/j.soildyn.2018.05.002.
[17] C. Michel, P. Lestuzzi, C. Lacave. (2014). Simplified non-linear seismic displacement demand prediction for low period structures. Bulletin of Earthquake Engineering.12(4):1563-1581. DOI: 10.1016/j.soildyn.2018.05.002.
[18] N. A. Abrahamson. (1992). Non-stationary spectral matching. Seismological Research Letters.63(1):30. DOI: 10.1016/j.soildyn.2018.05.002.
[19] CEN (Comité Européen de Normalisation). (2004). Eurocode 8: Design Provisions for Earthquake Resistance of Structures—Part 1: General Rules, Seismic Actions and Rules for Buildings, EN 1998-1:2004. DOI: 10.1016/j.soildyn.2018.05.002.
[20] W. D. Iwan. (1980). Estimating inelastic response spectra from elastic spectra. Earthquake Engineering & Structural Dynamics.8(4):375-388. DOI: 10.1016/j.soildyn.2018.05.002.
[21] H. Norda, C. Butenweg. (2011). Möglichkeiten und grenzen der anwendbarkeit statisch nichtlinearer verfahren nach DIN EN 1998-1. Bauingenieur.86:13-21. DOI: 10.1016/j.soildyn.2018.05.002.
[22] P. Fajfar. (2000). A nonlinear analysis method for performance-based seismic design. Earthquake Spectra.16(3):573-592. DOI: 10.1016/j.soildyn.2018.05.002.
[23] E. Miranda, J. Ruiz-García. (2002). Evaluation of approximate methods to estimate maximum inelastic displacement demands. Earthquake Engineering & Structural Dynamics.31(3):539-560. DOI: 10.1016/j.soildyn.2018.05.002.
[24] P. Lestuzzi, H. Charif, S. Rossier, M. Ferrière and. et al.(2018). Nonlinear time-history analysis for validation of the displacement-based seismic assessment of the RC upper bridge of a dam. Advances in Civil Engineering.2018-13. DOI: 10.1016/j.soildyn.2018.05.002.
[25] T. J. Sullivan, G. M. Calvi, N. Priestley. Initial stiffness versus secant stiffness in displacement-based design. .2888. DOI: 10.1016/j.soildyn.2018.05.002.
[26] P. Schwab, P. Lestuzzi. (2007). Assessment of the seismic non-linear behavior of ductile wall structures due to synthetic earthquakes. Bulletin of Earthquake Engineering.5(1):67-84. DOI: 10.1016/j.soildyn.2018.05.002.
[27] R. Allahabadi, G. H. Powell. (1988). Drain-2DX user guide. . DOI: 10.1016/j.soildyn.2018.05.002.
[28] P. Lestuzzi, Y. Belmouden, M. Trueb. (2007). Non-linear seismic behavior of structures with limited hysteretic energy dissipation capacity. Bulletin of Earthquake Engineering.5(4):549-569. DOI: 10.1016/j.soildyn.2018.05.002.
[29] S. Otani. (1974). Inelastic analysis of R/C frame structures. Journal of the Structural Division.100(7):1433-1449. DOI: 10.1016/j.soildyn.2018.05.002.
[30] R. W. Litton. (1975). A contribution to the analysis of concrete structures under cyclic loading. . DOI: 10.1016/j.soildyn.2018.05.002.
[31] Applied Technology Council (ATC). (2005). Improvement of Nonlinear Static Seismic Analysis Procedures: FEMA-440. DOI: 10.1016/j.soildyn.2018.05.002.
文献评价指标
浏览 12次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次