首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-09-12
Detection of Genes Related to Resistance to Silver Nanoparticles in Bacteria from Secondary Endodontic Infections
Research Article
Marco Felipe Salas-Orozco 1 Nereyda Niño Martínez 2 Gabriel-Alejandro Martínez-Castañón 2 Fernando Torres Méndez 1 Nuria Patiño-Marín 1 Facundo Ruiz 2
Show affiliations
DOI:10.1155/2019/8742975
Received 2019-04-01, accepted for publication 2019-08-20, Published 2019-08-20
PDF
摘要

Introduction. Silver nanoparticles are used in endodontics due to their antimicrobial activity, although it is considered that bacteria are unable to develop resistance to silver nanoparticles. Silver resistance genes have been related to resistance to nanoparticles and antibiotics. The presence of these resistance genes has not been studied in endodontic bacteria. The objective of this study is to report the prevalence of silver resistance genes in endodontic bacteria. Methods. The selected teeth were isolated using a rubber dam and any restoration, post, or caries was eliminated. The operative field was disinfected, and the root-filling material was removed. The samples were obtained using three sterile paper points to absorb the fluid of the root canal. The DNA from the samples and the control organism was extracted, and the detection of the silCBA resistance genes was carried out by PCR. Results. The results of this study show a high prevalence (73.3%) of silCBA silver resistance genes. The Spearman rank correlation coefficient was utilized to identify correlations between the presence of genes and clinical variables. Conclusions. This study reports a high frequency of silver resistance genes related to nanoparticle resistant from bacteria.

授权许可

Copyright © 2019 Marco Felipe Salas-Orozco et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Nereyda Niño Martínez.Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, uaslp.mx.nereyda.nino@uaslp.mx

推荐引用方式

Marco Felipe Salas-Orozco,Nereyda Niño Martínez,Gabriel-Alejandro Martínez-Castañón,Fernando Torres Méndez,Nuria Patiño-Marín,Facundo Ruiz. Detection of Genes Related to Resistance to Silver Nanoparticles in Bacteria from Secondary Endodontic Infections. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] X. Hao, F. L. Lüthje, Y. Qin, S. F. McDevitt. et al.(2015). Survival in amoeba—a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a “copper pathogenicity island”. Applied Microbiology and Biotechnology.99(14):5817-5824. DOI: 10.1016/S0928-4931(01)00221-1.
[2] P. M. Lang, R. C. Jacinto, T. S. Dal Pizzol, M. B. C. Ferreira. et al.(2016). Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis. International Journal of Antimicrobial Agents.48(5):467-474. DOI: 10.1016/S0928-4931(01)00221-1.
[3] J. Guo, S. H. Gao, J. Lu, P. L. Bond. et al.(2017). Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Applied Materials & Interfaces.9(27):22298-22307. DOI: 10.1016/S0928-4931(01)00221-1.
[4] Y. Yang, J. M. Mathieu, S. Chattopadhyay, J. T. Miller. et al.(2012). Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano.6(7):6091-6098. DOI: 10.1016/S0928-4931(01)00221-1.
[5] I. Rocas, I. Jung, C. Lee, J. Siqueirajr. et al.(2004). Polymerase chain reaction identification of microorganisms in previously root-filled teeth in a South Korean population. Journal of Endodontics.30(7):504-508. DOI: 10.1016/S0928-4931(01)00221-1.
[6] M. Blanco Massani, J. Klumpp, M. Widmer, C. Speck. et al.(2018). Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739. Biometals.31(6):1101-1114. DOI: 10.1016/S0928-4931(01)00221-1.
[7] K. L. Palmer, V. N. Kos, M. S. Gilmore. (2010). Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Current Opinion in Microbiology.13(5):632-639. DOI: 10.1016/S0928-4931(01)00221-1.
[8] I. J. Davis, H. Richards, P. Mullany. (2005). Isolation of silver-and antibiotic-resistant Enterobacter cloacae from teeth. Molecular Oral Microbiology.20(3):191-194. DOI: 10.1016/S0928-4931(01)00221-1.
[9] K. L. Wyres, K. E. Holt. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Current Opinion in Microbiology.45:131-139. DOI: 10.1016/S0928-4931(01)00221-1.
[10] L. C. Moraes, M. V. R. Só, T. S. Dal Pizzol, M. B. C. Ferreira. et al.(2015). Distribution of genes related to antimicrobial resistance in different oral environments: a systematic review. Journal of Endodontia.41(4):434-441. DOI: 10.1016/S0928-4931(01)00221-1.
[11] A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová. et al.(2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology.13(1):65-71. DOI: 10.1016/S0928-4931(01)00221-1.
[12] V. Peciuliene, A. H. Reynaud, I. Balciuniene, M. Haapasalo. et al.(2001). Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. International Endodontic Journal.34(6):429-434. DOI: 10.1016/S0928-4931(01)00221-1.
[13] C. Sedgley, D. B. Clewell. (2004). Bacterial plasmids in the oral and endodontic microflora. Endodontic Topics.9(1):37-51. DOI: 10.1016/S0928-4931(01)00221-1.
[14] M. H. Saier, R. Tam, A. Reizer, J. Reizer. et al.(1994). Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Molecular Microbiology.11(5):841-847. DOI: 10.1016/S0928-4931(01)00221-1.
[15] M. L. Cohen. (2001). Nanotubes, nanoscience, and nanotechnology. Materials Science and Engineering: C.15(1-2):1-11. DOI: 10.1016/S0928-4931(01)00221-1.
[16] J. Cook, R. Nandakumar, A. F. Fouad. (2007). Molecular-and culture-based comparison of the effects of antimicrobial agents on bacterial survival in infected dentinal tubules. Journal of Endodontics.33(6):690-692. DOI: 10.1016/S0928-4931(01)00221-1.
[17] C. P. Randall, A. Gupta, N. Jackson, D. Busse. et al.(2015). Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. Journal of Antimicrobial Chemotherapy.70(4):1037-1046. DOI: 10.1016/S0928-4931(01)00221-1.
[18] M. Samiei, A. Farjami, S. M. Dizaj, F. Lotfipour. et al.(2016). Nanoparticles for antimicrobial purposes in endodontics: a systematic review of in vitro studies. Materials Science and Engineering: C.58:1269-1278. DOI: 10.1016/S0928-4931(01)00221-1.
[19] J. E. Gomes-Filho, F. O. Silva, S. Watanabe, L. T. Angelo Cintra. et al.(2010). Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. Journal of Endodontia.36(10):1698-1702. DOI: 10.1016/S0928-4931(01)00221-1.
[20] L. Fang, X. Li, L. Li, S. Li. et al.(2016). Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Scientific Reports.6(1). DOI: 10.1016/S0928-4931(01)00221-1.
[21] B. R. de Lima, G. F. Nicoloso, C. C. Fatturi-Parolo, M. B. C. Ferreira. et al.(2018). Prevotella strains and lactamic resistance gene distribution in different oral environments of children with pulp necrosis. International Endodontic Journal.51(11):1196-1204. DOI: 10.1016/S0928-4931(01)00221-1.
[22] N. Zargar, M. A. Marashi, H. Ashraf, R. Hakopian. et al.(2019). Identification of microorganisms in persistent/secondary endodontic infections with respect to clinical and radiographic findings: bacterial culture and molecular detection. Iranian Journal of Microbiology.11(2):120-128. DOI: 10.1016/S0928-4931(01)00221-1.
[23] J. L. Graves, M. Tajkarimi, Q. Cunningham, A. Campbell. et al.(2015). Rapid evolution of silver nanoparticle resistance in Escherichia coli. Frontiers in Genetics.6. DOI: 10.1016/S0928-4931(01)00221-1.
[24] L. N. Andrade, T. E. S. Siqueira, R. Martinez, A. L. C. Darini. et al.(2018). Multidrug-resistant CTX-M-(15, 9, 2)-and KPC-2-producing Enterobacter hormaechei and Enterobacter asburiae isolates possessed a set of acquired heavy metal tolerance genes including a chromosomal sil operon (for acquired silver resistance). Frontiers in Microbiology.9. DOI: 10.1016/S0928-4931(01)00221-1.
[25] C. Kaweeteerawat, P. Na Ubol, S. Sangmuang, S. Aueviriyavit. et al.(2017). Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology and Environmental Health, Part A.80(23-24):1276-1289. DOI: 10.1016/S0928-4931(01)00221-1.
[26] C. F. Murad, L. M. Sassone, M. Faveri, R. Hirata. et al.(2014). Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. Journal of Endodontics.40(7):899-906. DOI: 10.1016/S0928-4931(01)00221-1.
[27] I. Prada, P. Mico-Munoz, T. Giner-Lluesma, P. Mico-Martinez. et al.(2019). Influence of microbiology on endodontic failure. Literature review. Medicina Oral Patología Oral y Cirugia Bucal.24(3):e364-e372. DOI: 10.1016/S0928-4931(01)00221-1.
[28] M. Mishra, S. Kumar, R. K. Majhi, L. Goswami. et al.(2018). Antibacterial efficacy of polysaccharide capped silver nanoparticles is not compromised by AcrAB-TolC efflux pump. Frontiers in Microbiology.9. DOI: 10.1016/S0928-4931(01)00221-1.
[29] C. Pal, J. Bengtsson-Palme, E. Kristiansson, D. G. J. Larsson. et al.(2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics.16(1). DOI: 10.1016/S0928-4931(01)00221-1.
[30] P. Sunde, I. Olsen, G. Debelian, L. Tronstad. et al.(2002). Microbiota of periapical lesions refractory to endodontic therapy. Journal of Endodontics.28(4):304-310. DOI: 10.1016/S0928-4931(01)00221-1.
[31] S. Vasileiadis, E. Puglisi, M. Trevisan, K. G. Scheckel. et al.(2015). Changes in soil bacterial communities and diversity in response to long-term silver exposure. FEMS Microbiology Ecology.91(10). DOI: 10.1016/S0928-4931(01)00221-1.
[32] J. S. Madsen, M. Burmølle, L. H. Hansen, S. J. Sørensen. et al.(2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology & Medical Microbiology.65(2):183-195. DOI: 10.1016/S0928-4931(01)00221-1.
[33] A. Al-Ahmad, H. Ameen, K. Pelz, L. Karygianni. et al.(2014). Antibiotic resistance and capacity for biofilm formation of different bacteria isolated from endodontic infections associated with root-filled teeth. Journal of Endodontics.40(2):223-230. DOI: 10.1016/S0928-4931(01)00221-1.
[34] P. J. Finley, R. Norton, C. Austin, A. Mitchell. et al.(2015). Unprecedented silver-resistance in clinically isolated Enterobacteriaceae: major implications for burn and wound management. Antimicrobial Agents and Chemotherapy.59(8):4734-4741. DOI: 10.1016/S0928-4931(01)00221-1.
[35] G. Svensäter, G. Bergenholtz. (2004). Biofilms in endodontic infections. Endodontic Topics.9(1):27-36. DOI: 10.1016/S0928-4931(01)00221-1.
[36] S. Sütterlin, M. Dahlö, C. Tellgren-Roth, W. Schaal. et al.(2017). High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. Journal of Hospital Infection.96(3):256-261. DOI: 10.1016/S0928-4931(01)00221-1.
[37] C. Pal, K. Asiani, S. Arya, C. Rensing. et al.(2017). Metal resistance and its association with antibiotic resistance. Microbiology of Metal Ions:261-313. DOI: 10.1016/S0928-4931(01)00221-1.
[38] E. J. Woods, C. A. Cochrane, S. L. Percival. (2009). Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Veterinary Microbiology.138(3-4):325-329. DOI: 10.1016/S0928-4931(01)00221-1.
[39] A. Gupta, K. Matsui, J.-F. Lo, S. Silver. et al.(1999). Molecular basis for resistance to silver cations in Salmonella. Nature Medicine.5(2):183-188. DOI: 10.1016/S0928-4931(01)00221-1.
文献评价指标
浏览 13次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次