首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2019 ,2019-07-24
Dynamic Characteristics of Magnetic Suspended Dual-Rotor System by Riccati Transfer Matrix Method
Research Article
Dongxiong Wang 1 , 2 Nianxian Wang 1 , 2 Kuisheng Chen 1 , 2 Chun Ye 1 , 2
Show affiliations
DOI:10.1155/2019/9843732
Received 2019-03-12, accepted for publication 2019-06-09, Published 2019-06-09
PDF
摘要

The magnetic suspended dual-rotor system (MSDS) can effectively increase the thrust weight ratio of aeroengines. However, the MSDS dynamic characteristics have rarely been investigated. In this research, a MSDS with the outer rotor supported by two active magnetic bearings (AMBs) is designed, and the PID control is employed. The Riccati transfer matrix method using complex variables is adopted to establish the MSDS dynamic model. Subsequently, the influences of AMBs’ control parameters on the MSDS dynamic characteristics are explored. According to the analysis, two rigid mode shapes remain unchanged with the variation of the relationship between their corresponding damped critical speeds (DCSs). Moreover, the rigid DCSs disappear with large derivative coefficient. Eventually, the validity of the dynamic model and the appearance of rigid DCSs are verified.

授权许可

Copyright © 2019 Dongxiong Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Nianxian Wang.The Key Laboratory for Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, No. 947, Heping Venue, Qingshan District, CT, Wuhan 430081, China, wust.edu.cn;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, No. 947, Heping Avenue, Qingshan District, CT, Wuhan 430081, China, wust.edu.cn.wangnianxian1987@163.com

推荐引用方式

Dongxiong Wang,Nianxian Wang,Kuisheng Chen,Chun Ye. Dynamic Characteristics of Magnetic Suspended Dual-Rotor System by Riccati Transfer Matrix Method. Shock and Vibration ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. Wang, N. Wang, C. Ye, K. Chen. et al.(2017). Research on analytical bearing capacity model of active magnetic bearings based on magnetic saturation. IET Electric Power Applications.11(9):1548-1557. DOI: 10.1115/1.3438358.
[2] K. Jiang, C. Zhu, L. Chen, X. Qiao. et al.(2015). Multi-DOF rotor model based measurement of stiffness and damping for active magnetic bearing using multi-frequency excitation. Mechanical Systems and Signal Processing.60-61(1):358-374. DOI: 10.1115/1.3438358.
[3] Z. Wang, C. Mao, C. Zhu. (2018). A design method of PID controllers for active magnetic bearings-rigid rotor systems. Proceedings of the Chinese Society for Electrical Engineering.38(20):1-9. DOI: 10.1115/1.3438358.
[4] N. Wang, D. Jiang, H. Xu. (2017). Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.233(3):1147-1158. DOI: 10.1115/1.3438358.
[5] P. Yu, D. Zhang, Y. Ma, J. Hong. et al.(2018). Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with fan blade out. Mechanical Systems and Signal Processing.106(1):158-175. DOI: 10.1115/1.3438358.
[6] G. Sun, A. Palazzolo, A. Provenza, C. Lawrence. et al.(2008). Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine. Journal of Sound & Vibration.316(1-5):147-163. DOI: 10.1115/1.3438358.
[7] R. Ebrahimi, M. Ghayour, H. M. Khanlo. (2016). Chaotic vibration analysis of a coaxial rotor system in active magnetic bearings and contact with auxiliary bearings. Journal of Computational and Nonlinear Dynamics.12(3). DOI: 10.1115/1.3438358.
[8] N. Wang, Y. Hu, H. Wu, R. Dong. et al.(2015). Research on bearing capacity model of large-air-gap hybrid magnetic bearings. Journal of Mechanical Engineering.51(1):153-160. DOI: 10.1115/1.3438358.
[9] Y. Yang, D. Cao, D. Wang, G. Jiang. et al.(2016). Fixed-point rubbing characteristic analysis of a dual-rotor system based on the Lankarani-Nikravesh model. Mechanism and Machine Theory.103(1):202-221. DOI: 10.1115/1.3438358.
[10] P. Bonello, P. M. Hai. (2009). A receptance harmonic balance technique for the computation of the vibration of a whole aero-engine model with nonlinear bearings. Journal of Sound & Vibration.324(1-2):221-242. DOI: 10.1115/1.3438358.
[11] D.-P. Wang, F.-X. Wang. (2011). Levitation force analysis of magnetic bearing by circuit-field combination method. Electric Machines and Control.15(11):8-13. DOI: 10.1115/1.3438358.
[12] Y. Yang, D. Cao, T. Yu, D. Wang. et al.(2016). Prediction of dynamic characteristics of a dual-rotor system with fixed point rubbing—theoretical analysis and experimental study. International Journal of Mechanical Sciences.115-116(1):253-261. DOI: 10.1115/1.3438358.
[13] N. Wang, D. Wang, K. Chen, H. Wu. et al.(2016). Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle. Journal of Magnetism and Magnetic Materials.410(1):257-264. DOI: 10.1115/1.3438358.
[14] R. Ebrahimi, M. Ghayour, H. M. Khanlo. (2017). Effects of some design parameters on bifurcation behavior of a magnetically supported coaxial rotor in auxiliary bearings. Engineering Computations.34(7):2379-2395. DOI: 10.1115/1.3438358.
[15] X. Ren, Y. Le, J. Sun, B. Han. et al.(2017). Magnetic flux leakage modelling and optimisation of a CRAHMB for DC motor. IET Electric Power Applications.11(2):212-221. DOI: 10.1115/1.3438358.
[16] K. Gupta, K. D. Gupta, K. Athre. (1993). Unbalance response of a dual rotor system theory and experiment. Journal of Vibration and Acoustics.115(4):427-435. DOI: 10.1115/1.3438358.
[17] H. K. Roy, A. S. Das, J. K. Dutt. (2016). An efficient rotor suspension with active magnetic bearings having viscoelastic control law. Mechanism and Machine Theory.98(1):48-63. DOI: 10.1115/1.3438358.
[18] P. N. Bansal, R. G. Kirk. (1975). Stability and damped critical speeds of rotor-bearing systems. Journal of Engineering for Industry.97(4):1325-1332. DOI: 10.1115/1.3438358.
[19] F. Wang, G.-H. Luo, X.-G. Yang, H.-T. Cui. et al.(2017). Research on modeling and dynamic characteristics of complex coaxial rotor system. Journal of Vibroengineering.19(3):1524-1545. DOI: 10.1115/1.3438358.
[20] Z. Wang. (1987). Singularities of the Riccati transfer matrix method and its elimination. Journal of Vibration and Shock.2(1):74-78. DOI: 10.1115/1.3438358.
[21] P. Anantachaisilp, Z. Lin. (2017). Fractional order PID control of rotor suspension by active magnetic bearings. Actuators.6(1):1-31. DOI: 10.1115/1.3438358.
[22] R. R. Humphris, R. D. Kelm, D. W. Lewis, P. E. Allaire. et al.(1986). Effect of control algorithms on magnetic journal bearing properties. Journal of Engineering for Gas Turbines and Power.108(4):624-632. DOI: 10.1115/1.3438358.
[23] J.-N. Liu, Z.-Y. Ren, S.-W. Wu, Y.-L. Tang. et al.(2013). Theoretical vibration analysis on 600 Wh energy storage flywheel rotor—active magnetic bearing system. International Journal of Rotating Machinery.2013(8)-11. DOI: 10.1115/1.3438358.
[24] G. Schweitzer, E. H. Maslen. (2009). Magnetic Bearings: Theory, Design, and Application to Rotating Machinery:15-17. DOI: 10.1115/1.3438358.
[25] Z.-X. Fei, S.-G. Tong, C. Wei. (2013). Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method. Journal of Zhejiang University SCIENCE A.14(4):268-280. DOI: 10.1115/1.3438358.
[26] Y. Guojun, X. Yang, S. Zhengang, G. Huidong. et al.(2007). Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT. Nuclear Engineering & Design.237(12-13):1363-1371. DOI: 10.1115/1.3438358.
[27] Z. Wu, J. Li, R. Shi. (2012). Current research status and key technology of more-electric aeroengine. Advances in Aeronautical Science and Engineering.3(4):463-467. DOI: 10.1115/1.3438358.
[28] X. Chen, M. Liao. Steady state characteristics of a dual-rotor system with intershaft bearing subjected to mass unbalance and base motions. :1-16. DOI: 10.1115/1.3438358.
[29] J. Tang, B. Xiang, Y. Zhang. (2014). Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing. ISA Transactions.53(4):1357-1365. DOI: 10.1115/1.3438358.
[30] X. Chen, M. Liao. Transient characteristics of a dual-rotor system with intershaft bearing subjected to mass unbalance and base motions during start-up. :1-18. DOI: 10.1115/1.3438358.
[31] H.-W. D. Chiang, C.-N. Hsu, S.-H. Tu. (2004). Rotor-bearing analysis for turbomachinery single- and dual-rotor systems. Journal of Propulsion and Power.20(6):1096-1104. DOI: 10.1115/1.3438358.
[32] P. Anantachaisilp, Z. Lin. (2013). An experimental study on PID tuning methods for active magnetic bearing systems. International Journal of Advanced Mechatronic Systems.5(2):146-154. DOI: 10.1115/1.3438358.
[33] S. Zheng, B. Han, Y. Wang, J. Zhou. et al.(2015). Optimization of damping compensation for a flexible rotor system with active magnetic bearing considering gyroscopic effect. IEEE/ASME Transactions on Mechatronics.20(3):1130-1137. DOI: 10.1115/1.3438358.
[34] P. M. Hai, P. Bonello. (2016). An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings. Journal of Sound & Vibration.318(3):592-605. DOI: 10.1115/1.3438358.
[35] X. Wang, J. Zhu. (2001). Investigation on dynamic performance of active magnetic bearing rotor system. Chinese Journal of Mechanical Engineering.37(11):7-12. DOI: 10.1115/1.3438358.
[36] J. W. Lund. (1974). Stability and damped critical speeds of a flexible rotor in fluid-film bearings. Journal of Engineering for Industry.96(2):509-517. DOI: 10.1115/1.3438358.
[37] K. D. Gupta, K. Gupta, K. Athre. Stability analysis of dual rotor system by extended transfer matrix method. . DOI: 10.1115/1.3438358.
[38] G. Luo, X. Hu, X. Yang. (2009). Nonlinear Analysis of counter-rotating dual-rotor system. Journal of Vibration Engineering.22(3):268-273. DOI: 10.1115/1.3438358.
文献评价指标
浏览 7次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次