首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2019 ,2019-07-25
Application of the Spectral Element Method in a Surface Ship Far-Field UNDEX Problem
Research Article
Zhaokuan Lu 1 Alan Brown 1
Show affiliations
DOI:10.1155/2019/7463134
Received 2019-04-06, accepted for publication 2019-07-11, Published 2019-07-11
PDF
摘要

The prediction of surface ship response to a far-field underwater explosion (UNDEX) requires the simulation of shock wave propagation in the fluid, cavitation, fluid-structure interaction, and structural response. Effective approaches to model the fluid include cavitating acoustic finite element (CAFE) and cavitating acoustic spectral element (CASE) methods. Although the spectral element method offers the potential for greater accuracy at lower computational cost, it also generates more spurious oscillations around discontinuities which are difficult to avoid in shock-related problems. Thus, the advantage of CASE remains unproven. In this paper, we present a 3D-partitioned FSI framework and investigate the application of CAFE and CASE to a surface ship early-time far-field UNDEX problem to determine which method has the best computational efficiency for this problem. We also associate the accuracy of the structural response with the modeling of cavitation distribution. A further contribution of this work is the examination of different nonmatching mesh information exchange schemes to demonstrate how they affect the structural response and improve the CAFE/CASE methodologies.

授权许可

Copyright © 2019 Zhaokuan Lu and Alan Brown. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhaokuan Lu.Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA, vt.edu.lzhaok6@vt.edu

推荐引用方式

Zhaokuan Lu,Alan Brown. Application of the Spectral Element Method in a Surface Ship Far-Field UNDEX Problem. Shock and Vibration ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. E. Newton. (1979). Effects of cavitation on underwater shock loading-plane problem part 1. . DOI: 10.1006/jfls.1997.0120.
[2] M. M. Swisdak. (1978). Explosion Effects and Properties: Part II—Explosion Effects in Water. DOI: 10.1006/jfls.1997.0120.
[3] D. M. Russell. Error measures for comparing transient data: part I: development of a comprehensive error measure Part II: error measures case study. :3-6. DOI: 10.1006/jfls.1997.0120.
[4] M. A. Sprague, T. L. Geers. (2001). Computational treatments of cavitation effects in near-free-surface underwater shock analysis. Shock and Vibration.8(2):105-122. DOI: 10.1006/jfls.1997.0120.
[5] T. Irvine. (2012). An Introduction to the Shock Response Spectrum. DOI: 10.1006/jfls.1997.0120.
[6] A. T. Patera. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics.54(3):468-488. DOI: 10.1006/jfls.1997.0120.
[7] O. C. Zienkiewicz, D. K. Paul, E. Hinton. (1983). Cavitation in fluid-structure response (with particular reference to dams under earthquake loading). Earthquake Engineering & Structural Dynamics.11(4):463-481. DOI: 10.1006/jfls.1997.0120.
[8] M. A. Sprague. (2002). Advanced Computational Techniques for the Analysis of 3-D Fluid-Structure Interaction with Cavitation. DOI: 10.1006/jfls.1997.0120.
[9] A.-M. Zhang, S.-F. Ren, Q. Li, J. Li. et al.(2012). 3D numerical simulation on fluid-structure interaction of structure subjected to underwater explosion with cavitation. Applied Mathematics and Mechanics.33(9):1191-1206. DOI: 10.1006/jfls.1997.0120.
[10] B. Klenow. (2009). Finite and Spectral Element Methods for Modeling Far-Field Underwater Explosion Effects on Ships. DOI: 10.1006/jfls.1997.0120.
[11] S. L. Wood, Y. S. Shin. (1998). Cavitation Effects on a Ship-like Box Structure Subjected to an Underwater Explosion. DOI: 10.1006/jfls.1997.0120.
[12] P. K. Fox, Y. W. Kwon, Y. S. Shin. (1992). Nonlinear Response of Cylindrical Shells to Underwater Explosion: Testings and Numerical Prediction Using USA/DYNA3D. DOI: 10.1006/jfls.1997.0120.
[13] (1989). MIL-S-901D, Military Specification: Shock Tests. H.I. (High-Impact) Shipboard Machinery, Equipment, and Systems, Requirements for (17-Mar-1989) [S/S BY MIL-DTL-901E]. DOI: 10.1006/jfls.1997.0120.
[14] J. A. DeRuntz, T. L. Geers, C. A. Felippa. (1978). The Underwater Shock Analysis (USA) Code: A Reference Manual. DOI: 10.1006/jfls.1997.0120.
[15] H. H. Bleich, I. S. Sandler. (1970). Interaction between structures and bilinear fluids. International Journal of Solids and Structures.6(5):617-639. DOI: 10.1006/jfls.1997.0120.
[16] C. A. Felippa, K. C. Park, M. R. Ross. (2010). A classification of interface treatments for FSI. Fluid Structure Interaction II: Modelling, Simulation, Optimization:27-51. DOI: 10.1006/jfls.1997.0120.
[17] R. H. Cole. (1948). Underwater Explosions. DOI: 10.1006/jfls.1997.0120.
[18] Y. Shin, N. Schneider. Ship shock trial simulation of USS Winston S. Churchill (DDG 81): modeling and simulation strategy and surrounding fluid volume effects. . DOI: 10.1006/jfls.1997.0120.
[19] A. H. Keil. (1961). The Response of Ships to Underwater Explosions. DOI: 10.1006/jfls.1997.0120.
[20] F. L. DiMaggio, I. S. Sandler, D. Rubin. (1981). Uncoupling approximations in fluid-structure interaction problems with cavitation. Journal of Applied Mechanics.48(4):753-756. DOI: 10.1006/jfls.1997.0120.
[21] W. D. Reid. (1996). The Response of Surface Ships to Underwater Explosions. DOI: 10.1006/jfls.1997.0120.
[22] C. Bernardi, Y. Maday, A. T. Patera. (1993). Domain decomposition by the mortar element method. Asymptotic And Numerical Methods For Partial Differential Equations With Critical Parameters:269-286. DOI: 10.1006/jfls.1997.0120.
[23] D. B. Woyak. Modeling submerged structures loaded by underwater explosions with ABAQUS/explicit. :1-15. DOI: 10.1006/jfls.1997.0120.
[24] X. Li, X. Wei, P. Zheng, W. G. Wu. et al.(2010). The response of a floating structure due to underwater explosion with cavitation effect. International Society of Offshore and Polar Engineers.7:633-638. DOI: 10.1006/jfls.1997.0120.
[25] Z. Aman, Z. Weixing, W. Shiping, F. Linhan. et al.(2011). Dynamic response of the non-contact underwater explosions on naval equipment. Marine Structures.24(4):396-411. DOI: 10.1006/jfls.1997.0120.
[26] Z. Zong, Y. Zhao, H. Li. (2013). A numerical study of whole ship structural damage resulting from close-in underwater explosion shock. Marine Structures.31:24-43. DOI: 10.1006/jfls.1997.0120.
[27] C. Farhat, M. Lesoinne, P. Le Tallec. (1998). Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering.157(1-2):95-114. DOI: 10.1006/jfls.1997.0120.
[28] G. I. Taylor. (1941). The pressure and impulse of submarine explosion waves on plates. The Scientific Papers of Sir Geoffrey Ingram Taylor:287-303. DOI: 10.1006/jfls.1997.0120.
[29] G. Wang, S. Zhang, M. Yu, H. Li. et al.(2014). Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries. Applied Ocean Research.46:40-53. DOI: 10.1006/jfls.1997.0120.
[30] K. Mäkinen. (1998). Cavitation models for structures excited by a plane shock wave. Journal of Fluids and Structures.12(1):85-101. DOI: 10.1006/jfls.1997.0120.
[31] M. R. Ross, C. A. Felippa, K. C. Park, M. A. Sprague. et al.(2008). Treatment of acoustic fluid-structure interaction by localized lagrange multipliers: formulation. Computer Methods in Applied Mechanics and Engineering.197(33–40):3057-3079. DOI: 10.1006/jfls.1997.0120.
[32] Dassault Systèmes Simulia. (2014). Abaqus 6.14 Theory Guide. DOI: 10.1006/jfls.1997.0120.
[33] J. D. de Basabe, M. K. Sen. (2007). Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics.72(6):T81-T95. DOI: 10.1006/jfls.1997.0120.
[34] A. K. Mathew. (2018). Modeling Underwater Explosion (UNDEX) Shock Effects for Vulnerability Assessment in Early Stage Ship Design. DOI: 10.1006/jfls.1997.0120.
[35] C. Farhat, M. Lesoinne, N. Maman. (1995). Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. International Journal for Numerical Methods in Fluids.21(10):807-835. DOI: 10.1006/jfls.1997.0120.
[36] A. de Boer, A. H. van Zuijlen, H. Bijl. (2008). Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Computer Methods in Applied Mechanics and Engineering.197(49-50):4284-4297. DOI: 10.1006/jfls.1997.0120.
[37] E. W. Clements. (1972). Shipboard Shock and Navy Devices for its Simulation. DOI: 10.1006/jfls.1997.0120.
[38] Y. S. Shin. (2004). Ship shock modeling and simulation for far-field underwater explosion. Computers & Structures.82(23–26):2211-2219. DOI: 10.1006/jfls.1997.0120.
[39] C. A. Felippa, J. A. Deruntz. (1984). Finite element analysis of shock-induced hull cavitation. Computer Methods in Applied Mechanics and Engineering.44(3):297-337. DOI: 10.1006/jfls.1997.0120.
[40] S. W. Gong, K. Y. Lam. (2006). On attenuation of floating structure response to underwater shock. International Journal of Impact Engineering.32(11):1857-1877. DOI: 10.1006/jfls.1997.0120.
[41] T. L. Geers, B. J. Toothaker. (2000). Third-order doubly asymptotic approximations for computational acoustics. Journal of Computational Acoustics.8(1):101-120. DOI: 10.1006/jfls.1997.0120.
[42] (2017). MpCCI 4.5 User Manual. DOI: 10.1006/jfls.1997.0120.
[43] T. L. Geers. (1970). Residual potential and approximate methods for three-dimensional fluid-structure interaction problems. Journal of the Acoustical Society of America.49(5B):1505-1510. DOI: 10.1006/jfls.1997.0120.
[44] T. L. Geers. (1978). Doubly asymptotic approximations for vibration analysis of submerged structures. Journal of the Acoustical Society of America.64(5):1500-1508. DOI: 10.1006/jfls.1997.0120.
[45] M. A. Sprague, T. L. Geers. (2003). Spectral elements and field separation for an acoustic fluid subject to cavitation. Journal of Computational Physics.184(1):149-162. DOI: 10.1006/jfls.1997.0120.
[46] M. A. Sprague, T. L. Geers. (2006). A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion. Computer Methods in Applied Mechanics and Engineering.195(17-18):2149-2167. DOI: 10.1006/jfls.1997.0120.
[47] R. K. Jaiman, X. Jiao, P. H. Geubelle, E. Loth. et al.(2005). Assessment of conservative load transfer for fluid–solid interface with non-matching meshes. International Journal for Numerical Methods in Engineering.64(15):2014-2038. DOI: 10.1006/jfls.1997.0120.
[48] R. Lohner, C. Yang, J. Cerbal. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids. . DOI: 10.1006/jfls.1997.0120.
[49] M. A. Sprague, T. L. Geers. (2004). A spectral-element method for modelling cavitation in transient fluid-structure interaction. International Journal for Numerical Methods in Engineering.60(15):2467-2499. DOI: 10.1006/jfls.1997.0120.
[50] M. R. Ross, M. A. Sprague, C. A. Felippa, K. C. Park. et al.(2009). Treatment of acoustic fluid-structure interaction by localized lagrange multipliers and comparison to alternative interface-coupling methods. Computer Methods in Applied Mechanics and Engineering.198(9–12):986-1005. DOI: 10.1006/jfls.1997.0120.
文献评价指标
浏览 7次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次